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Abstract. Many machine learning tasks contain feature evaluation as
one of its important components. This work is concerned with attribute
estimation in the problems where class distribution is unbalanced or
the misclassification costs are unequal. We test some common attribute
evaluation heuristics and propose their cost-sensitive adaptations. The
new measures are tested on problems which can reveal their strengths
and weaknesses.

1 Introduction

Feature (attribute) evaluation is an important component of many machine
learning tasks, e.g., feature subset selection, constructive induction, decision and
regression tree learning. In feature subset selection we need a reliable and prac-
tically efficient method for estimating the relevance of the features to the target
concept, so that we can tackle learning problems where hundreds or thousands of
potentially useful features describe each input object. In the constructive induc-
tion we try to enhance the power of the representation language and therefore
introduce new features. Typically many candidate features are generated and
again we have to evaluate them in order to decide which to retain and which to
discard. While constructing a decision or regression tree the learning algorithm
at each interior node selects the splitting rule (feature) which divides the prob-
lem space into subspaces. To select an appropriate splitting rule the learning
algorithm has to evaluate several possibilities and decide which would partition
the given problem most appropriately. Feature rankings and numerical estimates
provided by evaluation algorithms are also an important source of information
for a human understanding of certain tasks.

While historically the majority of machine learning research have been fo-
cused on reducing the classification error, there also exists a corpus of work on
cost-sensitive classification where all errors are not equally important (see on-
line bibliography [13]). In general, differences in importance of errors are handled
through the cost of misclassification.

This work is concerned with the cost-sensitive attribute estimation and we
assume that costs can be presented with the cost matrix C, where C(3, j) is the



cost (could also be benefit) associated with prediction that an example belongs
to the class 7; where in fact it belongs to the class 7;. The optimal prediction
for an example x is the class 7; that minimizes the expected loss:

Lix,m) = Y P(5)C 0 ),

where P(7;|x) is the probability of the class 7; given example x. The task of a
learner is therefore to estimate these conditional probabilities. Feature evaluation
measure need not be cost-sensitive for decision tree building, as shown by [1, 3, 4].
However, cost-sensitivity is a desired property of an algorithm which tries to
rank or weight features according to their importance. Such ranking can be
used for feature selection and feature weighting or shown to human experts to
confirm/expand their domain knowledge. This is especially important in the
fields like medicine where experts posses great deal of intuitive knowledge.

We will investigate some properties of attribute evaluation measures, like
how do they behave on imbalanced data sets, scale with increasing number of
classes, whether they detect (conditional) dependencies between attributes and
to what extent they are cost-sensitive. We propose several cost-sensitive variants
of common attribute evaluation measures and test them on artificial data sets
which can reveal their properties.

Throughout the paper we use the notation where each learning instance
I, I, ..., I, is represented by an ordered pair (x,7), where each vector of at-
tributes xj consists of individual attributes A4;, i = 1,...,a, (a is the number of
attributes) and is labeled with the target value 75, j = 1, ..., ¢ (¢ is the number
of class values). Each discrete attribute A; has values a; through a,,,. Notation
I; ; presents the value of j-th attribute for the instance I;, and I; , presents its
class value. We write p(a; 1) for the probability that the attribute A; has value
ag, p(7k) is the probability of the class 74, and p(7;|a; &) is the probability of the
class 7; conditioned by the attribute A; having the value ay.

The paper is organized into 5 sections. In Section 2 we review some selected
attribute evaluation measures and in Section 3 we test how imbalanced class
distribution affects their performance. In Section 4 we describe how to extend
these measures to use the information from the cost matrix and in Section 5 we
evaluate the proposed extensions. Section 6 concludes the work.

2 Attribute Evaluation Measures

The problem of attribute estimation has received much attention in the litera-
ture. There are several measures for estimating attributes’ quality. In classifica-
tion problems these are e.g., Gini index [1], Gain ratio [11], Relief [5], ReliefF
[6], MDL [7], and DKM [2].

Except Relief and ReliefF all these attribute evaluation measures are impu-
rity based, meaning that they measure impurity of the class value distribution.
They assume the conditional (upon the class) independence of the attributes,



evaluate each attribute separately and not take the context of other attributes
into account. In problems which possibly involve much feature interactions these
measures are not appropriate. Relief and ReliefF do not make this assumption
and can correctly evaluate attributes in problems with strong dependencies be-
tween the attributes. We will first present measures based on impurity followed
by ReliefF.

2.1 Impurity based measures

These measures evaluate each attribute separately by measuring impurity of the
splits resulting from partition of the learning instances according to the values
of the evaluated attribute. The general form of all impurity based measures is:

QAo ;
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M(Ai) = i(r) =) plaiy)i(rlaig) |
j=1

where i(7) is the impurity of class values before the split, and i(7|a; k) is the
impurity of class values after the split on A; = aj ;. By subtracting weighted
impurity of the splits from the impurity of unpartitioned instances we measure
gain in the purity of class values resulting from the split. Larger values of M (A;)
imply pure splits and therefore good attributes. We cannot directly apply these
measures to numerical attributes, but we can use any of the number of discretiza-
tion techniques first and then evaluate discretized attributes. We consider three
measures as examples of impurity based attribute evaluation.

Gain ratio [11] is implemented in C4.5 program and is the most often used
impurity based measure. It is defined as

i1 p(7i) log p(7s) — Z;;"i Yoy p(Tilai ;) log p(Tilas ;)
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(1)

Its gain part tries to maximize the difference of entropy (which serves as impurity
function) before and after the split. To prevent excessive bias towards multiple
small splits the gain is normalized with the attribute’s entropy.

DKM |[2] has the following form of impurity function:

i(1) = 2\/p(Tmaﬂc)(1 = P(Tmaz)) , where p(Timaz) = I%lial)(p(ﬁ) (2)

is the most probable class value (the one which labels the split). Drummond
and Holte [3] have shown that for binary attributes this function is invariant to
changes in the proportion of different classes, i.e. it is cost-insensitive.



MDL is based on Minimum Description Length principle and measures the
quality of attributes as their ability to compress the data. The difference in
coding length before and after the value of the attribute is revealed corresponds
to the difference in impurity. Kononenko [7] has shown empirically that this
criterion has the most appropriate bias concerning multi-valued attributes among
a number of other impurity-based measures. It is defined as:
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Here n is the number of training instances, n; the number of training instances
from class 4, n ; the number of instances with j-th value of given attribute, and
n;; the number of instances from class ¢ with j-th value of the attribute.

2.2 ReliefF

ReliefF algorithm [6, 12] is an extension of Relief [5]. Unlike Relief it is not lim-
ited to two class problems, is more robust, and can deal with incomplete and
noisy data. The idea of Relief and ReliefF is to evaluate partitioning power of at-
tributes according to how well their values distinguish between similar instances.
An attribute is given a high score if its values separate similar observations with
different class and do not separate similar instances with the same class values.
ReliefF samples the instance space, computes the differences between predictions
and values of the attributes and forms a statistical measure for the proximity of
the probability densities of the attribute and the class. Assigned quality evalu-
ations are in the range [—1,1].

Pseudo code of the algorithm is given on Figure 1. ReliefF randomly selects
an instance R; (line 3), and then searches for & of its nearest neighbors from the
same class, called nearest hits H (line 4), and also k nearest neighbors from each
of the different classes, called nearest misses M (t) (lines 5 and 6). It updates the
quality estimation W, for all attributes depending on their values for R;, hits H
and misses M (t) (lines 7 and 8). The process is repeated for m times.

The update formula balances the contribution of hits and all the misses, and
averages the result of m iterations:

1t)con(A,, Ry, M(C))
1- p(Ri,T)

1 1 & o
Wv: v T T Avv iaH _ 4
Wiy — —con(Ay, Ry, H) + — Z: (4)

t#R; -

where con(4,, R;,S) is the contribution of k nearest instances from the set S
(hits or misses). In the simplest case it can be an average difference of attribute’s



Algorithm ReliefF
Input: for each training instance a vector of attribute values and the class value
Output: the vector W with the evaluation for each attribute

1. forv=1toado W, =0

2. fori=1to m do begin

3 randomly select an instance R;

4 find k£ nearest hits H

5. for each class t # R; » do

6 from class t find k nearest misses M (t)
7 for v =1to ado

8 update W, according to Eq. (4)

9

end;
Fig. 1. Pseudo code of ReliefF algorithm
values for k instances:

k
con(Ay, Ri, S) = 7 > diff (A, R;, S;) .
j=1

El i

Here diff (4,, I3, I,,) denotes the difference between the values of the attribute 4,
for two instances I; and I,,. For nominal and numerical attributes, respectively,
it can be defined as:

O; It,v = Iu,v
1; otherwise

},diff<Av,It,fu> Fw = uol

n .
max I; , —min 1,
=1 =1

diff (A,, I, I,,) = {

In this work we use exponentially decreasing weighted contribution of instances
ranked by distance (k = 70, o = 20 as recommended by [12]):

_ (rank(Ri,Sj) ) 2
S diff(Ay, Ry, S))e ’

con(A,, R;, S) =

rank(Ri,Sl))2
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In (4) the contribution of each misses’ class is weighted with the prior prob-
ability of that class p(7¢). Since the contributions of hits and misses in each step
should be in [0,1] and also symmetric, the misses’ probabilities have to sum to
1. As the class of hits is missing in the sum we have to divide each probability
weight with factor 1 — p(R; ;).

Selection of k hits and k misses from each class instead of just one hit and miss
and weighted update of misses is the basic difference to Relief. It ensures greater
robustness of the algorithm concerning noise and favorable bias concerning multi-
valued attributes and multi-class problems.



3 Imbalanced Data Sets

Misclassification costs are often closely related with imbalanced distribution of
class values in the data set (rare classes usually being of higher interest). We first
test an ability of described measures to detect attributes which identify minority
class values and, for now, we do not assume any knowledge of costs. For that
matter we constructed three problems, C2, C3 and C5 with 2, 3, and 5 class
values (available labels are cl, ¢2, ¢3, c4, or ¢5). For each class value (2, 3, or
5) we construct two binary attributes A-c?-90 and A-c?-70 (with values 0 and
1). Each binary attribute identifies one class value in 90% or 70% of the cases
(e.g., the value of attribute A-c2-90 is 1 in 90% of the cases where the instance
is labeled with c2; if label is different from c¢2, the attribute’s value is randomly
assigned). In each problem we also have 5 binary random attributes (R-~50, R-60,
R-70, R-80, and R-90), with 50%, 60%, 70%, 80%, and 90% of 0 values.

To test detection of conditional dependencies we transformed C2, C3 and C5
in such a way, that we replaced each of the informative binary attributes with
two attributes, which are XOR of the original attribute (e.g., A-¢2-90 is replaced
with X1-¢2-90 and X2-¢2-90, where their values are assigned in such a way that
the parity bit of the two attributes equals the value of A-c2-90). We call the
transformed problems C2x, C3x, and Cbx, respectively.

To observe how the distribution of class values influences the evaluation mea-
sures we formed two versions of each problem, one with uniform distribution of
class values (data sets with suffix 'u’) and one with imbalanced distribution of
class values (data sets with suffix ’i’), so altogether 12 data sets. Distribution of
class values and characteristics of the problems are given in Table 1.

Table 1. Characteristics of the problems.

name c class distribution a #inf #rnd n e distribution by (7)

C2u 2 0.5, 0.5 9 4 5 1000 0.05 0.95

C2i 2 0.9, 0.1 9 4 5 1000 0.31 0.69

C3u 3 0.33, 0.33, 0.33 11 6 5 1000 0.06 0.18 0.76

C3i 3 0.8, 0.15, 0.05 11 6 5 1000 0.33 0.30 0.37
Cbhu 5 0.2,0.2,0.2,0.2,02 15 10 5 1000 0.01 0.01 0.03 0.06 0.89
C5i 50.5,0.3,0.15,0.04,0.01 15 10 5 1000 0.16 0.17 0.22 0.12 0.33
C2xu 2 0.5, 0.5 13 8 5 1000 0.05 0.95

C2xi 2 0.9, 0.1 13 8 5 1000 0.31 0.69

C3xu 3 0.33, 0.33, 0.33 17 12 5 1000 0.06 0.18 0.76
C3xi 3 0.8, 0.15, 0.05 17 12 5 1000 0.33 0.30 0.37
Chxu b 0.2,0.2,0.2,0.2,02 25 20 5 1000 0.01 0.01 0.03 0.06 0.89
Cbhxi 5 0.5, 0.3, 0.15, 0.04, 0.01 25 20 5 1000 0.16 0.17 0.22 0.12 0.33

We begin our analysis with two class problems. Note that for all measures
higher score means better attribute, but the scores are not comparable between
measures or across problems.

Left-hand side of Table 2 gives evaluations for the problem where class val-
ues are uniformly distributed (C2u problem). All the measures give expected



rankings, i.e, attributes identifying values in 90% of the cases have higher scores
than 70% attributes. All informative attributes were assigned higher scores than
Rz, which is the highest score assigned to one of the five random attributes.
If its value is larger than the value of some informative attribute that attribute
is indistinguishable from random attributes for the respective measure.

Right-hand side of Table 2 contains evaluations for the two class, imbalanced
problem (C2i). As before impurity-based measures rank 90% attributes higher
than 70% attributes, and they also rank higher the attributes identifying more
probable class. ReliefF, on the contrary ranks the minority class higher. The
reason for this as well as for the high score of random attribute (R-50) becomes
evident if we consider the space of attributes and its role in (4). The negative
update of nearest hits in this two cases is likely to be zero (nearest instances
have the same values of attributes), and so the positive update of nearest misses
is not canceled for random attributes and the attributes identifying minority
class.

Table 2. Feature evaluations for C2u and C2i.

C2u, uniform C2i, imbalanced

measure  A-c1-90 A-c1-70 A-c2-90 A-c2-70 Rpmgz  A-c1-90 A-c1-70 A-c2-90 A-c2-70 Rmaz
Gain ratio 0.171 0.022 0.193 0.027 0.001  0.078 0.007 0.031 0.017 0.002
DKM 0.110 0.015 0.122 0.018 0.001  0.045 0.007 0.039 0.020 0.003
MDL 0.149 0.018 0.164 0.022-0.003  0.041 0.002 0.026 0.012 -0.002
ReliefF 0.156 0.033 0.130 0.029 0.008 0.185 0.137 0.301 0.183 0.141

Similar results for three class problems are collected in Table 3. Due to space
constraints we omit results for A-c1-70 and A-c2-70, as they show similar trend
than A-c3-70, but are always assigned higher scores. With uniform class distribu-
tion (left-hand side of the table) all measures except DKM separate informative
from random attributes and rank 90% attributes higher than 70% attributes.
The values of DKM are completely uninformative (after the split the probability
of the majority class is around 0.5, giving high impurity impression). With im-
balanced class distribution (p(0)=0.8, p(1)=0.15, p(2)=0.05; right-hand side of
the table), all measures rank attributes identifying more frequent classes higher
than attributes identifying less frequent classes, 90% attributes higher than 70%
attributes, and do not distinguish between A-c3-70 and random attribute with
maximal score. ReliefF improves its behavior compared to two class problems,
because of more attributes (distances are larger and hits start to normalize the
excessive contributions of the misses) and because of its normalizing factor for
misses in (4). We get similar results and trends for 5 class problems so we skip
the details.

In all problems where informative attributes are replaced with two XOR-
ed attributes (C2xi, C2xu, C3xi, C3xu, C5xi, Chxu) the impurity functions do
not differentiate between informative and random attributes, while ReliefF does,
except for 70% attributes and the best random attribute (R-50). As it is well
established fact that ReliefF can detect attributes with strong interactions and



Table 3. Feature evaluations for C3u and C3i.

C3u, uniform C3i, imbalanced
measure A-c1-90 A-c2-90 A-c3-90 A-c2-70 Rmax A-c1-90 A-c2-90 A-c3-90 A-c3-70 Rmax
Gain ratio 0.138 0.118 0.121 0.029 0.002 0.223 0.066 0.028 0.002 0.002
DKM -0.055 -0.053 -0.054 -0.038 -0.014  0.121 0.040 0.002 0.001 0.004
MDL 0.123 0.103 0.109 0.021 -0.001  0.149 0.057 0.019 -0.006 -0.000
ReliefF 0.108 0.093 0.086 0.027 0.006 0.262 0.191 0.127 0.094 0.096

impurity based measures cannot this is an expected result but shows that this
ability exists in the imbalanced data sets as well. We skip the details.

The attribute evaluation measures we described so far did not take cost
information into account. Surely, if such information is available we want that
measures take it into account and give higher scores to attributes identifying
classes whose misclassification cost is higher. We present such measures in the
next section.

4 Implanting Cost-Sensitivity

There are different techniques how to incorporate cost information into learning.
The key idea is to use expected cost of misclassification [1, 13]. Following [8], we

define expected cost of misclassifying an example that belongs to the i-th class
as

> p(r)C(i, ) (6)

=1
JF#i

1
gi=——
1 —p(m)

and than change the probability estimates for class values:

/ p(7i)ei

p (Tl) 25:1 p(T])EJ (7)
We use (7) in (1) and (2) to make Gain ratio and DKM cost sensitive. In (1)
conditional probabilities p(7;|a; ;) are also computed in the spirit of (7). We call
the respective measures GRatioC and DKMec. This adaptation has the same
effect as sampling the data proportionally to (7). MDL uses length of the code
instead of probabilities, so we cannot use this approach, but we can sample the
data according to (7) and run MDL (3) on the resulting data set. The resulting
measure is referred to as MDLs.

For two class problems Kukar et al. [8] have adapted Relief! to use cost by
changing its update formula:?

. ER; .
W, =W, —diff(A,, R;, H)/m + —=——>——diff (4, R;, M))/m . (8)

! Relief uses one nearest hit H and one nearest miss M, so we use diff instead of con.
2 This formula was typeset incorrectly in [8] (confirmed by M. Kukar, personal com-
munication). Eq. (8) is the correct version which was actually implemented.



This adaptation (called ReliefK in results below) is tailored for two class prob-
lems. As we were not satisfied with its performance on multi-class problems we
tried different multi-class extensions and used p’(7;) instead of p(7;) in (4). We
denote this extension with ReliefFp’. If we use just the information from cost
matrix and do not take prior probabilities into account, similarly to (6) and (7),
we compute average cost of misclassifying an example that belongs to the i-th
class as

0= 1 3 Cli) 9)

G
The prior probability of class value becomes
Qg
p(r) = S o (10)

j=1 %

We use p(7;) instead of p(7;) in (4) and call this version ReliefFp. For two class
problems ReliefF, ReliefFp’, and ReliefFp are identical.

Another idea how to use the cost information stems from the generalized form
of ReliefF [12]:

W& = Z similarity (7, I+, I,,) - similarity (4,, I+, I,,)
I, I,€T

where I; and I, are appropriate samples drawn from the instance population
Z. For attribute similarity ReliefF uses negative diff function (5) and for class
similarity it uses

.. . 1 ] It77- = IU}T
similarity (7, It, I,,) = {_1 - Iu,T} , (11)
which together gives exactly updates for hits and misses in original Relief. The
obvious place to use cost information is therefore (11), which affects the update
formula (4). We used cost information in the form of expected and average cost.
Using the expected cost, the contribution of class differences in hits costs ep
and different class of miss prevents the actual cost, so (4) changes to

W, =W, —ep, ,con(A,, R;, H)/m
n zc: p(1)C (R, 7e)con(A,, Ry, M(t))/m .

i, T

1- p(Ri,T) (12)
t#R; o
We call this measure ReliefFeC. While its updates are symmetric for hits and
misses, note that they are not normalized to [0,1], so the scores of the attributes
are not necessary normalized to [-1,1] . If we use just cost information (no priors)
then we can use average cost of misclassification (ReliefFaC variant)

W, =W, —ag,  con(A,,R;, H)/m
n zc: C(R; -, m)con(Ay, R, M(t))/m .

c—1

(13)

t#Ri,T



For two class problems ReliefFec and ReliefFac are identical.

We assumed that C(i,7) = 0, i.e., that predicting correct class implies no
cost. If we are using benefit matrix instead of cost matrix, this is usually not the
case, and we suggest using actual C(7,%) instead of expected and average cost as
normalizing factor for hits in (12) and (13).

Alternatively, instead of using costs directly, we can change the sampling to
reflect the cost matrix as in [1, 10]. While this approach may not reflect all the
details of cost matrix, it may still work well in practice. We made sampling of
random instances of class j in ReliefF (line 3 on Figure 1) proportional to (7).
The resulting measure is called ReliefFs. In the next section we test how these
measures exploit cost information.

5 Using Cost Information

Following the arguments of Elkan [4] and Margineantu [9] not all cost matrixes
are sensible and realistic. We try to test our measures with realistic cost matrixes,
e.g., detecting exception for C2, progressive health risk for C3 and financial loss
for C5 problems:

0 1 1 1 1

0 1 0 1 1 2 0 1 1 1
C’2:[20 O} c3: |5 01 cCs: 5 4 0 1 1
20 5 0 10 9 6 0 1

100 99 96 91 O

The right-most column of Table 1 presents the probability distributions by (7)
computed from the given class distributions and cost matrixes.

In Table 4 we give results for two and three class problems with imbalanced
distribution (C2i and C3i). Uniform distribution is nonrealistic with cost ma-
trix information, so we skip these results. A-70,,;, denotes 70% attribute with
minimal score and R,,,, random attribute with maximal score.

For two class problem C2i (left-hand side of Table 4) MDLc and all variants
of ReliefF reflect cost-sensitivity, i.e., they evaluate A-c2-90 as better than A-
¢1-90 (c2 has higher cost assigned, so attribute identifying it is more useful).
These measures also separate 90% attributes from the random attributes. Only
MDLs separates 70% attribute with minimal score from random attributes for
2 class problems, while none of the measures cannot do that for 3 and 5 class
problems, which means, that random attributes are more difficult to detect in
the cost-sensitive context. GRatioC and DKMc are also cost-sensitive but fail to
separate A-c1-90 from the random attributes.

For three class problem C3i (right-hand side of Table 4) MDLs, ReliefFp,
ReliefFp’ and GRatioC are the most cost-sensitive (which can be seen by com-
paring results with Table 3), followed by ReliefFeC and ReliefFac. ReliefFs and
ReliefK are cost-sensitive to a lesser extent. DKMc once again fails completely
for multi-class problems as the changed probability distribution moved towards
the uniform distribution.



Table 4. Cost-sensitive feature evaluations for C2i and C3i.
C2i C3i

measure  A-c1-90 A-c2-90 A-70,,;n, Rmacz A-c1-90 A-c2-90 A-c3-90 A-70,,iy, Rmaz
GRatioC -0.029 0.114 0.000 0.000  0.177 0.132 0.169 0.009 0.020
DKMc  -0.007 0.083 0.000 0.000 -0.035-0.032-0.032 -0.029 0.000
MDLs 0.095 0.189 0.021-0.000  0.185 0.106 0.144 0.003 0.007
ReliefK  0.078 0.107 0.000 0.034  0.125 0.034 0.044 0.008 0.018
ReliefFp’ 0.185 0.306 0.137 0.141  0.286 0.200 0.195 0.136 0.133
ReliefFp  0.185 0.306 0.137 0.141  0.306 0.208 0.252 0.171 0.166
ReliefFeC 0.236 0.335 -0.125-0.072  0.405 0.029 0.092 -0.132-0.020
ReliefFaC 0.236 0.335 -0.125-0.072  0.352 0.105 0.182 -0.001 0.000
ReliefF's  0.083 0.123 -0.045-0.025  0.167 0.025 0.050 -0.049 -0.006

These findings are even more radical for the five class problem C5i, where
only ReliefFp, ReliefFp’, MDLs and GRatioC can separate 90% attributes from
random ones. ReliefFeC and ReliefFaC use (6) and (9) to normalize its hits so
they are less stable when large differences between entries in cost matrix are
not reflected by sufficiently large number of instances. ReliefF's also suffers from
insufficient number of instances, while ReliefK is not properly normalized for
multi-class problems.

In problems with XOR~ed attributes ReliefF based measures are cost-sensitive
and can differentiate between informative and random attributes, while impurity
based measures cannot.

6 Conclusions

We have investigated the performance of common attribute evaluation measures
in problems where the class distribution is imbalanced and in problems with
unequal misclassification costs. For that matter we constructed several data sets
and adapted existing measures. Impurity based measures were adapted by in-
cluding expected misclassification costs into class probabilities or through sam-
pling. Adaptations of ReliefF stemmed from the expected misclassification cost,
average misclassification cost, general form of ReliefF, and cost stratified sam-
pling.

Imbalanced data sets cause no problems to Gain ratio, MDL and ReliefF,
while DKM works only for two class problems. Only ReliefF detects highly de-
pendent attributes.

In problems with unequal misclassification costs only MDLs and two variants
of ReliefF, which use probability estimates (7) and (10) in the update formula
(4), reliably exploit information from cost matrix. Cost-sensitive adaptation of
Gain ratio fails to detect all important attributes in two class problem, while
DKM is useless for multi-class problems. ReliefF variants retain its ability to
detect highly dependent attributes.

While feature evaluation measures need not be cost-sensitive for decision
tree building, in further work we want to test this hypothesis the presented
measures. We will also investigate feature selection and weighting in the cost-
sensitive context.
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