
In J.F. Boulicaut et al.(eds): Machine Learning, ECML
2004 Proceedings, Springer, Berlin, 2004

Improving Random Forests

Marko Robnik-̌Sikonja

University of Ljubljana,
Faculty of Computer and Information Science,

Tržǎska 25, 1001 Ljubljana, Slovenia
tel.:+386 1 4768459 fax:+386 1 4768498
Marko.Robnik@fri.uni-lj.si

Abstract. Random forests are one of the most successful ensemble methods
which exhibits performance on the level of boosting and support vector machines.
The method is fast, robust to noise, does not overfit and offers possibilities for
explanation and visualization of its output. We investigate some possibilities to
increase strength or decrease correlation of individual trees in the forest. Using
several attribute evaluation measures instead of just one gives promising results.
On the other hand replacement of ordinary voting with voting weighted with mar-
gin achieved on most similar instances gives improvements which are statistically
highly significant over several data sets.

1 Introduction

Several authors have noted that constructing ensembles of base learners can signifi-
cantly improve the performance of learning. Bagging [1], boosting [6], random forests
[2] and their variants are the most popular examples of this methodology. Boosting and
random forests are comparable and sometimes better than state-of-the-art methods in
classification and regression [10].

The success of ensemble methods is usually explained with the margin and correla-
tion of base classifiers [14, 2]. To have a good ensemble one needs base classifiers which
are diverse (in a sense that they predict differently), yet accurate. The voting mechanism
which operates on the top of base learners then ensures highly accurate predictions of
the ensemble.

The AdaBoost algorithm constructs a series of base learners by weighting their
training set of examples according to the correctness of the prediction. Correctly pre-
dicted examples have their weights decreased, and incorrect prediction results in the
increased weight of an instance. In this way the subsequent base learners receive ef-
fectively different learning sets and gradually focus on the most problematic instances.
Usually tree based models are used as base learners.

Random forests construct a series of tree-based learners. Each base learner receives
different training set ofn instances which are drawn independently with replacement
from the learning set ofn instances. The bootstrap replication of training instances
is not the only source of randomness. In each node of the tree the splitting attribute
is selected from a randomly chosen sample of attributes. Random forests are computa-
tionally effective and offer good prediction performance. They are proven not to overfit,

and are less sensitive to noisy data compared to boosting. As the training sets of indi-
vidual trees are constructed by bootstrap replication, there is on average1/e≈ 36.8%
of instances not taking part in construction of the tree1. These instances, called out-of-
bag instances are the source of data for useful internal estimates of error, strength and
correlation. Breiman’s homepage offers several tools for exploiting the power of these
estimates and random forests.

In spite of apparent success of random forests methodology, we believe there is
room for improvement. This paper describes some successful and some unsuccessful
attempts to do so.

Individually, each of the base learners is a poor predictor. The random selection of
attributes makes individual trees rather weak. Our first aim was to strengthen individual
trees, without sacrificing variety between them or, alternatively increase variance with-
out sacrificing strength. We partly succeeded in the first goal by using ReliefF algorithm
for attribute estimation and in the second by using several different attribute evaluation
measures for split selection. Another improvements stems from the voting mechanism.
Not all trees are equally successful in labeling all instances. We use internal estimates
to identify instances most similar to the one we wish to label and then weight the votes
of the trees with the strength they demonstrate on these near instances. Improvements
are demonstrated on several classification data sets.

Throughout the paper we use the notation where each learning instance is repre-
sented by an ordered pair(x,y), where each vector of attributesx consists of individual
attributesAi , i = 1, ...,a, (a is the number of attributes) and is labeled with the target
valuey j , j = 1, ...,c (c is the number of class values). The correct class is denoted asy,
without index. Each discrete attributeAi has valuesv1 throughvmi (mi is the number of
values of attributeAi). We writep(vi,k) for the probability that the attributeAi has value
vk, p(y j) is the probability of the classy j , andp(y j |vi,k) is the probability of the class
y j conditioned by the attributeAi having the valuevk.

The paper is organized into 6 sections. Section 2 contains some background on ran-
dom forests, describes how strength and correlation are measured and shortly presents
the databases and methodology we used to evaluate improvements. In Section 3 we pro-
pose using several attribute evaluation measures as split selectors to decrease correlation
of trees in the forest. In Section 4 we analyze weighted voting. Section 5 contains eval-
uation of the proposed improvements on fresh data sets not used during development
and Section 6 concludes the work.

2 Random Forests

Random forests as used by Breiman [2] consist of ensemble ofK classifiersh1(x),
h2(x), . . . ,hK(x). Each classifier votes for one of the classes and an instance being clas-
sified is labeled with the winning class. We denote the joint classifier ash(x). Each
training set ofn instances is drawn at random with replacement from the training set
of n instances. With this sampling called bootstrap replication, on average 36.8% of
training instances are not used for building each tree. These out-of-bag instances come
handy for computing an internal estimate of the strength and correlation of the forest.

1 Constante≈ 2.718stands for the base of the natural logarithms.

Denote the set of out-of-bag instances for classifierhk asOk. Let Q(x,y j) be the
out-of-bag proportion of votes for classy j at inputx and an estimate ofP(h(x) = y j):

Q(x,y j) =

K
∑

k=1
I(hk(x) = y j ;(x,y) ∈Ok)

K
∑

k=1
I(hk(x);(x,y) ∈Ok)

(1)

whereI(·) is the indicator function. The margin function measures the extent to which
the average vote for the right classy exceeds the average vote for any other class:

mr(x,y) = P(h(x) = y)− c
max

j=1
j 6=y

P(h(x) = y j) (2)

It is estimated withQ(x,y) andQ(x,y j). Strength is defined as the expected margin,
and is computed as the average over the training set:

s=
1
n

n

∑
i=1

Q(xi ,y)− c

max
j=1
j 6=y

Q(xi ,y j)

 (3)

The average correlation is computed as the variance of the margin over the square of
standard deviation of the forest:

ρ =
var(mr)
sd(h())2 =

1
n

n
∑

i=1

Q(xi ,y)− c

max
j=1
j 6=y

Q(xi ,y j)

2

−s2

(
1
K

K
∑

t=1

√
pk + p̂k +(pk− p̂k)2

)2 (4)

where

pk =
∑

(xi ,y)∈Ok

I(hk(x) = y)

∑
(xi ,y)∈Ok

I(hk(x))

is an out-of-bag estimate ofP(hk(x) = y) and

p̂k =
∑

(xi ,y)∈Ok

I(hk(x) = ŷ j)

∑
(xi ,y)∈Ok

I(hk(x))

is an out-of-bag estimate ofP(hk(x) = ŷ j) and

ŷ j = arg
c

max
j=1
j 6=y

Q(x,y j)

is estimated for every instancex in the training set withQ(x,y j).

Breiman [2] uses unpruned decision trees as base classifiers and introduces addi-
tional randomness into the trees. Namely, in each interior node of each tree a subset
of r attributes is randomly selected and evaluated with the Gini index heuristics. The
attribute with the highest Gini index is chosen as split in that node.

We have implemented the random forests methodology in the framework of our
learning system2. All presented tests were executed with the recommended values of
the parameters for the forests (number of treesK = 100, number of randomly selected
attributes in each noder =

√
a, tree building is stopped when the number of instances

in a node is 5 or less).

For evaluation of improvements we use the UCI data sets [11] from Breiman’s paper
and two additional parity problems: parity2 with two parity attributes, and parity3 with
three parity attributes. Each of these parity problems contains also 10 random binary
attributes. The characteristics of data sets are collected in Table 1 which contains infor-
mation on the number of instances (n), number of classes (c), number of attributes (a),
number of numeric (num) and nominal (nom) attributes, and the percentage of miss-
ing values (miss). All problems except three larger ones were evaluated with 10-fold
cross-validation. For three larger problems we used predefined fixed splits to training
and testing sets; for letters 15000 instances for learning, 5000 for testing, for sat 4435
for learning, 2000 for testing, and for zip 7291 for learning, 2007 for testing.

Table 1.Characteristics of the problems used during the development process.

name n c a num nom miss
breast-cancer 699 2 9 9 0 0.25
bupa 345 2 6 6 0 0
diabetes 768 2 8 8 0 0
ecoli 336 8 7 7 0 0
german-numeric 1000 2 24 24 0 0
glass 214 7 9 9 0 0
ionosphere 351 2 34 34 0 0
letter 20000 26 16 16 0 0
parity2 200 2 12 0 12 0
parity3 200 2 13 0 13 0
sat 6435 6 36 36 0 0
segmentation 2310 7 19 19 0 0
sonar 208 2 60 60 0 0
soybean 683 19 35 0 35 9.78
vehicle 846 4 18 18 0 0
vote 435 2 16 0 16 5.63
vowel 990 11 11 10 1 0
zip 9298 10 256 256 0 0

2 All algorithms and programs are available at http://lkm.fri.uni-lj.si/rmarko/

For comparison of classifiers we use Wilcoxon signed-rank test, a non-parametric
equivalent of paired t-test. Its advantage is that it does not require normal distributions
or homogenity of variance. The price we pay for this is lower power of the test, so
we risk that some differences will not be recognized as significant. Details of the tests
can be found in [15], and a discussion of their use in machine learning context in [4].
We compare the classification accuracy and the area under the ROC curve (AUC). For
problems with more than two classes the AUC extension proposed by [7] is used. This
extension evaluates separation of pairs of classes, which could be misleading in certain
situations, e.g., in some folds we have noticed cases with perfect AUC score (1.0) but
less than 100% classification accuracy.

Throughout the paper and our work with random forests we have used these data
sets several times to evaluate improvements, which could lead to overfitting. To avoid
this danger we introduce another set of learning problems, not used during the develop-
ment, in Section 5 and test the final methods on them.

Our first aim was to increase strength or reduce correlation of the forests. We tackled
this challenge with attribute evaluation.

3 Attribute Evaluation

Breiman uses Gini index as the feature evaluation measure in random forests. Gini index
is fast but has some drawbacks compared to other heuristics (see [9] for detailed analy-
sis), in particular it cannot detect strong conditional dependencies among attributes. If
the problem is described with attributes where such dependencies arise (e.g., XOR type
of attributes) the evaluation will be incorrect and resulting performance of classifier
could be poor. The reason for this deficiency of Gini index is that it measures the impu-
rity of the class value distribution before and after the split on evaluated attribute. In this
way it assumes the conditional (upon the class) independence of attributes, evaluates
each attribute separately and does not take the context of other attributes into account.
The same behavior is typical for all impurity based measures (e.g., Gain ratio, DKM,
MDL, j-measure). In problems which possibly involve much feature interactions these
measures are not appropriate. The measure which solves this problem for classification
problems is ReliefF [13].

My first idea of using ReliefF in random forests was to evaluate attributes in the
preprocessing step, and use the quality estimates as weights in the process of selecting
subsample of attributes in each interior node of the tree. While this approach worked
well for artificial problems with highly dependent attributes (parity problems) it on aver-
age increased the correlation between the trees and resulted in decreased performance.
Another idea was to replace Gini as the sole attribute evaluation measure with several
others and thereby decrease correlation but retain strength. This indeed was the case
and we describe the exact procedure below.

The problem of attribute evaluation has received much attention in the machine
learning and there are several measures for estimating attributes’ quality. In classifica-
tion problems the most popular are e.g., Gini index [3], Gain ratio [12], ReliefF [8],
MDL [9], and DKM [5]. DKM is suitable only for two class problems, so we did not
use it in our study.

Except ReliefF all these measures are impurity based, meaning that they measure
impurity of the class value distribution. They are fast, demandingO(n ·a) steps for the
evaluation ofa attributes. We included also Myopic ReliefF, which contrary to ReliefF,
is also impurity based and possesses some interesting biases [9]. The general form of
all impurity based measures is:

I(Ai) = i(y)−
mi

∑
j=1

p(vi, j)i(y|vi, j) ,

wherei(y) is the impurity of class values before the split, andi(y|vi,k) is the impurity
of class values after the split onAi = vk, j . By subtracting the weighted impurity of the
splits from the impurity of unpartitioned instances we measure gain in the purity of
class values resulting from the split. Larger values ofI(Ai) imply pure splits and there-
fore good attributes. We cannot directly apply these measures to numerical attributes,
but we can use any of the number of discretization techniques first and then evaluate
discretized attributes, or, as in our case where the binary trees are built, we simply take
the maximum purity gain over all possible splits of the numeric attribute.

We briefly present measures we used, first the ones based on impurity followed by
ReliefF.

Gini index is used in CART learning system [3] and because of its simplicity it is also
the measure chosen by Breiman for random forests.

Gini(Ai) =−
c

∑
i=1

p(yi)2 +
mi

∑
j=1

p(vi, j)
c

∑
i=1

p(yi |vi, j)2 (5)

Gain ratio [12] is implemented in C4.5 program and is the most often used impurity
based measure. It is defined as

GR(Ai) =

c
∑

i=1
p(yi) logp(yi)−

mi

∑
j=1

c
∑

i=1
p(yi |vi, j) logp(yi |vi, j)

mi

∑
j=1

p(vi, j) logp(vi, j)
. (6)

Its gain part tries to maximize the difference of entropy (which serves as the impurity
function) before and after the split. To prevent excessive bias towards multiple small
splits the gain is normalized with the attribute’s entropy.

MDL is based on the Minimum Description Length principle and measures the quality
of attributes as their ability to compress the data. The difference in coding length before
and after the value of the attribute is revealed corresponds to the difference in impurity.
Kononenko [9] has shown empirically that this criterion has the most appropriate bias
concerning multi-valued attributes among a number of other impurity-based measures.

It is defined as:

MDL(Ai) =
1
n

(
log2

(
n

n1., ...,nc.

)
−

mi

∑
j=1

log2

(
n. j

n1 j , ...,nc j

)

+ log2

(
n+c+1

c−1

)
−

mi

∑
j=1

log2

(
n. j +c−1

c−1

))
(7)

Heren is the number of training instances,ni. the number of training instances from
classi, n. j the number of instances withj-th value of given attribute, andni j the number
of instances from classi with j-th value of the attribute.

Myopic ReliefF [9, 13] is a byproduct of the analysis of ReliefF’ behavior with large
number of near instances. It is strongly correlated to Gini index but has additional nor-
malization against multi-valued attributes and in case of multi-class problems:

MR(Ai) =

(
∑mi

j=1 p(vi, j)2 ∑c
i=1 p(yi |vi, j)2

)
−

(
∑mi

j=1 p(vi, j)2
)

∑c
i=1 p(yi)2

(∑c
i=1 p(yi)2)(1−∑c

i=1 p(yi)2)
(8)

ReliefF evaluates partitioning power of attributes according to how well their values
distinguish between similar instances. An attribute is given a high score if its values
separate similar observations with different class and do not separate similar instances
with the same class values. ReliefF samples the instance space, computes the differ-
ences between predictions and values of the attributes and forms a statistical measure
for the proximity of the probability densities of the attribute and the class. Its quality
estimates can be explained as the the proportion of the explained class values. Assigned
quality evaluations are in the range[−1,1]. The computational complexity for evalua-
tion of a attributes isO(m· n · a), wherem is the number of iterations. Details of the
algorithm and its analysis can be found in [13]. We use it throughout this paper with
its default settings, except for the number of iterationsm, which we set to thelogn to
ensure fast execution needed for large number of evaluations in the trees. Nevertheless
ReliefF is slower than impurity functions as it has to find nearest neighbors inO(n ·a)
steps even when the sample of attributes contains less thana attributes.

3.1 Forests with Several Evaluation Measures

In Table 2 we compare performance of two random forests variants. The standard one
which uses Gini index as the sole attribute evaluation heuristic, and the modified one
which uses five attribute evaluation measures (each fifth of the trees is build with differ-
ent heuristics: Gini index, Gain ratio, MDL, Myopic ReliefF, or ReliefF). We present
results for classification accuracy and AUC. For accuracy the difference over all data
sets is significant at 0.2 level using Wilcoxon signed-rank test, while for AUC the dif-
ferences are not significant.

While some improvement has been achieved we cannot be satisfied. Our further
investigation were in the area of classification with the forests.

Table 2.Random forests performance for sole Gini and 5 estimators

Gini index 5 estimators
name accuracy AUC accuracy AUC
breast-cancer 0.966 0.992 0.967 0.991
bupa 0.734 0.760 0.716 0.777
diabetes 0.762 0.756 0.770 0.747
ecoli 0.869 0.899 0.872 0.897
german-numeric 0.750 0.638 0.750 0.601
glass 0.763 0.942 0.776 0.940
ionosphere 0.937 0.958 0.937 0.963
letter 0.957 0.999 0.963 0.999
parity2 0.820 0.912 0.865 0.941
parity3 0.575 0.644 0.635 0.681
sat 0.910 0.985 0.908 0.984
segmentation 0.982 0.999 0.981 0.999
sonar 0.817 0.903 0.793 0.891
vehicle 0.750 0.926 0.752 0.926
vote 0.957 0.990 0.956 0.990
vowel 0.979 0.999 0.977 0.999
zip 0.934 0.995 0.938 0.995

4 Weighted Voting

A close investigation of the performance of individual trees on artificial data sets have
shown that not all trees are equally responsible for incorrect classification of individual
instances. This simple observation led to the idea that it would be useful to use only
some selected trees in classification. The selection of trees was based on their perfor-
mance on similar instances, but without success. Further refinement of this idea has led
to weighted voting.

For each instance we want to classify with the forest, we first find some of its most
similar instances. Similarity is measured with the forests as in [2]. For that matter we
keep track of the similarity for all the training instances. When classifying an instance
I with one of the trees, all the training instances from the leaf node whereI is classified
into have their similarity score increased by one. As we repeat the procedure for all the
trees the frequency of co-occurrence forms a measure of instance similarity. The same
procedure is used by Breiman to detect prototypes and outliers. We selectt most similar
training instances and classify them with each tree where they are in the out-of-bag set.
For each tree in the forest we measure margin (see Eq. (2)) on these similar out-of-bag
instances. The trees with negative average margin are left out of classification. For final
classification we use weighted voting of the remaining trees where weights are average
margins on the similar instances when they are in the out-of-bag set. The algorithm
demandsO(n ·K) additional space for saving information aboutn training instances
in the leaves of theK trees. While learning time remains unchanged, the classification

takes on averaget/e times more time to classifyt instances with the trees where they
are in the out-of-bag set (this happens on average in1/e≈ 36.8%of the trees).

A few tests have shown that algorithm is quite robust to the selection oft, so we
have sett = 30 which works satisfactory, but no systematic study was performed. In
the left-hand side of Table 3 we present the accuracy and AUC of the forests with
weighted voting (Gini with wv). If we compare these results with ordinary voting (see
Gini columns in Table 2), we see that weighted voting is mostly better and never worse
than ordinary voting.

Table 3.Random forests performance for weighted voting and 5 estimators with weighted voting.

Gini with wv 5est with wv
name accuracy AUC accuracy AUC
breast-cancer 0.967 0.992 0.967 0.991
bupa 0.739 0.770 0.719 0.781
diabetes 0.770 0.759 0.773 0.750
ecoli 0.869 0.902 0.866 0.896
german-numeric 0.760 0.641 0.758 0.613
glass 0.795 0.944 0.781 0.947
ionosphere 0.940 0.960 0.940 0.964
letter 0.958 0.999 0.964 0.999
parity2 0.875 0.940 0.910 0.971
parity3 0.625 0.691 0.740 0.841
sat 0.910 0.985 0.908 0.984
segmentation 0.982 0.999 0.981 0.999
sonar 0.865 0.936 0.841 0.922
vehicle 0.755 0.927 0.746 0.927
vote 0.957 0.991 0.956 0.990
vowel 0.979 0.999 0.977 0.999
zip 0.934 0.995 0.939 0.995

We executed Wilcoxon signed-ranks test to establish significance of the difference
with ordinary voting. The results for accuracy and AUC are significant even at 0.001
level!

An obvious thing to do is to combine the two successful improvements: several
attribute estimators and weighted voting. We present these results in the right-hand side
of Table 3. Some improvements are observed but also slight degradation of performance
on others. The differences are significant only compared to plain random forests (0.1
for accuracy and 0.2 for AUC) or random forests with 5 estimators (0.1 for accuracy,
non significant for AUC) while they are nonsignificant compared to weighted voting.

The results indicate that weighted voting is clearly and significantly beneficial,
while the positive effect of multiple estimators is not so convincing. Next Section tries
to clarify this issue.

5 Evaluation on Fresh Data Sets

To avoid the overfitting resulting from the persistent use of data sets described in Table
1, we introduce another set of 17 learning problems from UCI repository, not used
during development. The criterion for choosing particular data sets is their availability
in the format our system could read (or little effort to transform them into such format).
Their characteristics are contained in Table 4.

Table 4.Characteristics of the new data sets.

name n c a num nom miss
adult 5908 2 14 6 8 1.05
audiology 226 24 69 0 69 2.03
banding 138 2 29 19 10 6.85
credit aus 690 2 15 6 9 0.65
heart 270 2 13 7 6 0
hepatitis 155 2 19 6 13 5.67
house 91 2 16 0 16 4.53
iris 150 3 4 4 0 0
lymphography 148 4 18 0 18 0.04
mushroom 8124 2 22 0 22 1.39
post-operative 90 3 8 1 7 0.42
primary tumor 339 22 17 0 17 3.9
promoter 106 2 57 0 57 0
rheumatism 355 6 32 21 11 0.04
spambase 4601 2 57 57 0 0
splice-jxn 3190 3 60 0 60 0.03
yeast 1484 10 8 8 0 0

We compare the performance of plain random forests with random forests with one
or both of successful improvements: several attribute evaluation heuristics and voting
weighted with the average margin on similar instances. The accuracy and AUC figures
collected in Table 5 are calculated with 10-fold cross validation.

We can observe similar effects as before. The weighted voting causes strong boost
in performance (significant at 0.001 level for accuracy and 0.01 for AUC), while several
estimators show only a moderate nonsignificant improvement. The combination of both
is significantly different to plain variant at 0.005 level for accuracy and at 0.1 level for
AUC; it is different to several estimators variant at 0.1 level for accuracy and AUC.
The overall best method is therefore weighted voting, while it looks that using several
estimators is beneficial only for problems with strong conditional dependencies.

The t-test for this comparisons (and for the differences on the development data sets
as well) would declare all the differences more significant.

Table 5.Random forests performance on fresh data sets.

Gini 5 estimators weighted voting 5est & wv
name accuracy AUC accuracy AUC accuracy AUC accuracy AUC
adult 0.849 0.835 0.858 0.808 0.849 0.835 0.857 0.797
audiology 0.736 0.862 0.726 0.889 0.784 0.883 0.779 0.913
banding 0.738 0.606 0.716 0.553 0.796 0.687 0.760 0.677
credit aus 0.867 0.936 0.874 0.936 0.868 0.937 0.871 0.937
heart 0.830 0.886 0.837 0.890 0.833 0.889 0.848 0.897
hepatitis 0.833 0.717 0.858 0.735 0.858 0.755 0.851 0.769
house 0.956 0.988 0.956 0.988 0.956 0.988 0.956 0.988
iris 0.953 0.990 0.953 0.990 0.960 0.991 0.960 0.991
lymphography 0.817 0.895 0.824 0.884 0.824 0.909 0.857 0.916
mushroom 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
post-operative 0.656 0.669 0.700 0.669 0.678 0.689 0.711 0.669
primary tumor 0.440 0.740 0.439 0.723 0.460 0.722 0.481 0.701
promoter 0.914 0.943 0.885 0.955 0.923 0.961 0.953 0.991
rheumatism 0.698 0.668 0.690 0.682 0.701 0.680 0.690 0.692
spambase 0.952 0.985 0.953 0.984 0.952 0.985 0.952 0.984
splice-jxn 0.970 0.994 0.969 0.994 0.970 0.994 0.966 0.994
yeast 0.611 0.815 0.619 0.823 0.611 0.821 0.614 0.811

6 Conclusions

We investigate possibilities to improve the performance of random forests. First we
propose the use of several attribute evaluation measures for split selection in the process
of building the trees. This procedure decreases the correlation between the trees and
retains their strength which results in slight increase of the method’s performance. The
improvement is especially visible on data sets with highly dependent attributes and the
reason for this is the use of ReliefF algorithm.

The most important improvement in the performance of random forests is achieved
by changing the mechanism of voting. When classifying a new instance with ordinary
voting each tree casts a vote for one of the classes and the forest predicts the winning
class. We propose first to estimate the average margin of the trees on the instances most
similar to the new instance and then, after discarding the trees with negative margin,
weight the trees’ votes with the margin. Evaluation on several data sets has shown that
this approach significantly improves accuracy and AUC.

Systematical testing of the number of similar instances used in the weighting re-
mains further work. The results indicate that there is a room for improvement when
using several attribute evaluation measures, but a further study of which estimators to
use and how to combine them is necessary. Also a verification of the performance of
weighted voting in the regression context is needed.

Acknowledgements

I thank Leo Breiman for valuable insights into the inner workings of the method pub-
lished at his web site and for invited talk he gave at ECML/PKDD 2003 which initiated
my interest in random forests. This work was supported by Slovene Ministry of Educa-
tion, Science and Sport through the research programme P2-0209.

Bibliography

[1] Leo Breiman. Bagging predictors.Machine Learning Journal, 26(2):123–140,
1996.

[2] Leo Breiman. Random forests.Machine Learning Journal, 45:5–32, 2001.
[3] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.

Classification and regression trees. Wadsworth Inc., Belmont, California, 1984.
[4] Janez Dem̌sar. Statistically correct comparison of classifiers over multiple

datasets, 2004. (submitted).
[5] Thomas G. Dietterich, Michael Kerns, and Yishay Mansour. Applying the weak

learning framework to understand and improve C4.5. In Lorenza Saitta, edi-
tor, Machine Learning: Proceedings of the Thirteenth International Conference
(ICML’96), pages 96–103. Morgan Kaufmann, San Francisco, 1996.

[6] Yoav Freund and Robert E. Shapire. Experiments with a new boosting algorithm.
In Lorenza Saitta, editor,Machine Learning: Proceedings of the Thirteenth Inter-
national Conference (ICML’96). Morgan Kaufmann, 1996.

[7] David J. Hand and Robert J. Till. A simple generalisation of the area under the
ROC curve for multiple class classification problems.Machine Learning Journal,
45:171–186, 2001.

[8] Igor Kononenko. Estimating attributes: analysis and extensions of Relief. In Luc
De Raedt and Francesco Bergadano, editors,Machine Learning: ECML-94, pages
171–182. Springer Verlag, Berlin, 1994.

[9] Igor Kononenko. On biases in estimating multi-valued attributes. InProceedings
of the International Joint Conference on Artificial Intelligence (IJCAI’95), pages
1034–1040. Morgan Kaufmann, 1995.

[10] David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine
under test.Neurocomputing, 55:169–186, 2003.

[11] Patrick M. Murphy and David W. Aha. UCI repository of machine learning data-
bases, 1995. http://www.ics.uci.edu/ mlearn/MLRepository.html.

[12] J. Ross Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco, 1993.

[13] Marko Robnik-̌Sikonja and Igor Kononenko. Theoretical and empirical analysis
of ReliefF and RReliefF.Machine Learning Journal, 53:23–69, 2003.

[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: a new explanation for the effectiveness of voting methods. In Douglas H.
Fisher, editor,Machine Learning: Proceedings of the Fourteenth International
Conference (ICML’97), pages 322–330. Morgan Kaufmann, 1997.

[15] Jerrold H. Zar. Biostatistical Analysis (4th Edition). Prentice Hall, Englewood
Clifs, New Jersey, 1998.

