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Foreword

In the past two decades, Machine Learning (ML) has made, among the many areas of
Artificial Intelligence (Al), probably the most significant progress, and has grown into
a field of its own. In this period, many of its methods found their way into practical
applications, and in many application areas are now routinely used. The wide spread
and visibility of ML was accelerated by powerful new techniques, and also by the
appearance of effective and user-friendly implementations of ML tools, including some
excellent freely available platforms, such as Weka and Orange. All this has resulted in
ML, together with its related areas of Data Mining, Knowledge Discovery in Databases,
and Intelligent Data Analysis, becoming an effective tool for many other disciplines
as diverse as engineering, medicine, biology, ecology, biochemistry and finance. In
science, it is becoming part of general scientific methodology and is now used by
scientists in interpreting experimental data and in formulating new scientific theories.
ML is beginning to be taught outside Computer Science and is on the way to attaining
a similar status as some other subjects of general importance, in the same way as it is,
for example, useful to students of medicine and biology to learn the basics of statistics.

This book is written by two scientists who have made their own original contribu-
tions to the methods and applications of ML, one of the co-authors (I. K.) having been
involved since its early stages. In my view, the main strength of this book is its breadth
of coverage and wealth of material presented, without loss of depth. In this respect, the
book is rather unique among the books on machine learning. The book covers a large
majority of key methods, concepts and issues. The style of writing is terse and directly
to the point.

In comparison with other books on ML, the following chapters seem to be particu-
larly strong. Chapter 3 systematically introduces a repertoire of basic elements that are
universally used as components of ML methodology. Chapter 6 gives an outstanding
review of measures for attribute selection. Chapter 8 introduces constructive induction,
a topic that is rarely covered in books. In Chapters 13 and 14 on the theory of ML, the
book addresses deep theoretical questions of learnability.

This book will be useful reading both for beginners to the field, and even more so
to people who have already done some work in ML, but would like to broaden their
knowledge and are looking for reference to learn about yet unfamiliar topics.

Ivan Bratko
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Preface

In learning, each day something is gained. In following the Tao, each day something is
lost.
— Lao Tse

The book describes the basics of machine learning principles and algorithms that are
used in data mining and is intended for students of computer science, researchers who
need to adapt various algorithms for particular data mining tasks, and for education of
sophisticated users of machine learning and data mining tools.

Machine learning has exhibited tremendous progress in the last two decades.
Numerous systems for machine learning are nowadays available and the number of
their applications in various fields, such as industry, medicine, economics, ecology,
finance, and many others, is rapidly growing. Machine learning is used for data
analysis and knowledge discovery in databases, data mining, automatic generation of
knowledge bases for expert systems, game playing, text classification and text mining,
automatic recognition of speech, handwriting, images, etc.

The basic principle of machine learning is modeling of available data. Results
of various machine learning systems may be rules, functions, relations, equation
systems, probability distributions and other knowledge representations. The obtained
“knowledge” aims to explain the data and can be used for forecasting, diagnostics,
control, validation, and simulations.

Several excellent books have already been written on machine learning and data
mining, most notably (Mitchell, 1997; Witten and Frank, 2000, 2005; Hand et al.,
2001; Alpaydin, 2005). The purpose of our book is to provide a thorough and yet
a comprehensible general overview of the field. Our approach differs from other
textbooks by providing several different points of view to machine learning and data
mining, as reflected from the structure of the book:

e Besides defining the basic notions and overviewing the machine learning
methods, Chapter 1 provides the historical overview of the field and an overview
of the state-of-the-art data mining tools as well as established and emerging
standards.

e Chapter 2 is the least formal and introduces the psychological and philosophical
issues related to machine and human learning, intelligence, and consciousness.

e Basic principles of machine learning, described in Chapter 3, are the central issue
and can be considered as the core of the book.
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e The next three chapters divide the machine learning process into three basic
components: the representation of knowledge (Chapter 4) defines the hypothesis
space, Chapter 5 describes basic search algorithms that can be used to search
the hypothesis space, and the attribute quality measures (Chapter 6) are used to
guide the search.

e Chapters 7 and 8 add to the whole story formal and practical guidelines for
preparing, cleansing and transforming the input data in order to get the most
out of it with the available machine learning algorithms. Constructive induction,
described in Chapter 8, has great potentials, however, in the past not many
researchers or implementations considered it worthwhile. We believe that in
the future, when more research will be devoted to this area, the advantages of
constructive induction will be revealed and implemented in useful practical tools.

e The following four chapters use the principles and notions, described in
preceding chapters, as building blocks in order to describe particular learning
algorithms. Four chapters divide the field into four main approaches. Sym-
bolic learning (Chapter 9) includes all approaches that result in symbolic and
transparent knowledge representations. Statistical learning (Chapter 10), on
the other hand, results in knowledge representations that are typically hard to
understand and interpret by the end user. Artificial neural networks (Chapter
11) are inspired by biological neural networks. With respect to transparency of
knowledge representation, artificial neural networks are much closer to statistical
learning than to symbolic learning. Cluster analysis deserves a separate chapter
(Chapter 12) as the task of clustering algorithms differs a lot from other machine
learning tasks.

o The last two chapters introduce formal approaches to machine learning. Chapter
13 describes a mathematically and philosophically inspired problem of identifi-
cation in the limit. The results of this formal theory provide the ultimate answers
to philosophical questions which, however, are of modest practical use. On the
other hand, the computational learning theory, described in Chapter 14, aims to
provide theoretical answers to questions of more practical value.

In order to improve readability, we provide all the references in separate sections on
further reading, that also contain chapter summaries. Obvious exceptions that naturally
include references are, besides this preface, also historical Sections 1.3 and 1.4. We
try to keep the text free of formal derivations. Where needed, we provide separate
sections for formal derivations and proofs (Sections 6.3, 7.8, and 11.7). The diamond
symbol <) in the text indicates that the proof of the assertion is omitted from the text
and can be found at the end of the chapter in the corresponding section on formal
derivations and proofs. Obvious exceptions are the last two chapters, where proofs can
be found in the literature indicated in further reading. Those sections and chapters are
intended for advanced readers. In the table of contents, advanced topics are indicated
with * (moderately advanced) or ** (advanced). Appendix A defines some less known
formal notions, which are occasionally used in the text.
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Both authors have experience in teaching various parts of the material presented in
this book, to undergraduate and postgraduate students. For the undergraduate course
we suggest excluding sections and chapters marked with *: Section 3.4 (comparing
performance of machine learning algorithms), sections related to inductive logic
programming (Sections 4.2 and 9.5), Chapter 8 (constructive induction), Section 10.5
(support vector machines), Sections 11.3 and 11.4 (Hopfield’s and Bayesian neural
networks), as well as all sections and chapters marked with **. Optionally, Sections
9.3 (association rules) and 9.7 (Bayesian belief networks), and/or Chapter 12 (cluster
analysis) can also be kept for the postgraduate course.

The book web page can be found at the address: m1dmbook.fri.uni-17.si,
where all information and post-press corrections will be available. The readers’
comments, suggestions and indications about errors in the text are welcome, and should
be sent to either author’s e-mail address: igor.kononenko@fri.uni-17j.si or
matjaz.kukar@fri.uni-17j.si.
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