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Abstract

The paper provides an overview of the development of intelligent data analysis in medicine from
a machine learning perspective: a historical view, a state of the art view and a view on some future
trends in this subfield of applied artificial intelligence. The paper is not intended to provide a com-
prehensive overview but rather describes some subeareas and directions which from my personal point
of view seem to be important for applying machine learning in medical diagnosis. In the historical
overview I emphasize the naive Bayesian classifier, neural networks and decision trees. I present a
comparison of some state of the art systems, representatives from each branch of machine learning,
when applied to several medical diagnostic tasks. The future trends are illustrated by two case studies.
The first describes a recently developed method for dealing with reliability of decisions of classifiers,
which seems to be promising for intelligent data analysis in medicine. The second describes an ap-
proach to using machine learning in order to verify some unexplained phenomena from complementary
medicine, which is not (yet) approved by the orthodox medical community but could in the future
play an important role in overall medical diagnosis and treatment.

1 Introduction

Artificial intelligence is a part of computer science that tries to make computers more intelligent. One
of the basic requirements for any intelligent behaviour is learning. Most of the researchers today agree
that there is no intelligence without learning. Therefore, machine learning (Shavlik and Dietterich,
1990; Michie et al., 1994; Mitchell, 1997; Michalski et al., 1998) is one of major branches of artificial
intelligence and, indeed, it is one of the most rapidly developing subfields of AI research.

Machine learning algorithms were from the very beginning designed and used to analyse medical
data sets. Today machine learning provides several indispensible tools for intelligent data analysis.
Especially in the last few years, the digital revolution provided relatively inexpensive and available
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means to collect and store the data. Modern hospitals are well equipped with monitoring and other
data collection devices, and data is gathered and shared in large information systems. Machine learning
technology is currently well suited for analyzing medical data, and in particular there is a lot of work
done in medical diagnosis in small specialized diagnostic problems.

Data about correct diagnoses are often available in the form of medical records in specialized hos-
pitals or their departments. All that has to be done is to input the patient records with known correct
diagnosis into a computer program to run a learning algorithm. This is of course an oversimplification,
but in principle, the medical diagnostic knowledge can be automatically derived from the description
of cases solved in the past. The derived classifier can then be used either to assist the physician when
diagnosing new patients in order to improve the diagnostic speed, accuracy and/or reliability, or to
train students or physicians non-specialists to diagnose patients in a special diagnostic problem.

The aim of this paper is to provide an overview of the development of the intelligent data analysis
in medicine from a machine learning perspective: a historical view, a state of the art view and a view
on some future trends in this subfield of applied artificial intelligence, which are, respectivly described
in the following three sections. None of the three sections is intended to provide a comprehensive
overview but rather describe some subeareas and directions which from my personal point of view
seem to be important for medical diagnosis. In the historical overview I emphasize the naive Bayesian
classifier, neural networks and decision trees. Section 3 presents a comparison of some state of the
art systems, one or two representatives from each branch of machine learning, when applied to several
medical diagnostic tasks. The future trends are illustrated by two case studies. Section 4.1 describes
a recently developed method for dealing with reliability of decisions of classifiers, which seems to be
promising for intelligent data analysis in medicine. Section 4.2 describes an approach to using machine
learning in order to verify some unexplained phenomena from complementary medicine, which is not
(yet) approved by the orthodox medical community but could in the future play an important role in
overall medical diagnosis and treatment.

2 Historical overview

As soon as electronic computers came into use in the fifties and sixties, the algorithms were developed
that enabled modeling and analysing large sets of data. From the very beginning three major branches
of machine learning emerged. Classical work in symbolic learning is described by Hunt et al. (1966), in
statistical methods by Nilsson (1965) and in neural networks by Rosenblatt (1962). Through the years
all three branches developed advanced methods (Michie et al., 1994): statistical or pattern recognition
methods, such as the k-nearest neighbours, discriminant analysis, and Bayesian classifiers, inductive
learning of symbolic rules, such as top-down induction of decision trees, decision rules and induction
of logic programs, and artificial neural networks, such as the multilayered feedforward neural network
with backpropagation learning, the Kohonen’s self-organizing network and the Hopfield’s associative
memory.
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2.1 The naive Bayesian classifier

I limit the historical overview of statistical methods to the naive Bayesain classifier. From the very
beginning I was very interested in it. The algorithm is extremely simple but very powerful, and
later I discovered that it can provide also comprehensive explanations which was confirmed in long
discussions with physicians.

I was fascinated with its efficiency and ability to outperform most advanced and sophisticated
algorithms in many medical and also non-medical diagnostic problems. For example, when compared
with six algorithms, described in Section 3, the naive Bayesian classifier outperformed all the algo-
rithms on five out of eight medical diagnostic problems (Kononenko et al., 1998). Another example is
a hard problem in mechanical engineering, called mesh design. In one study, sophisticated inductive
logic programming algorithms achieved modest classification accuracy between 12 and 29% (Lavrač
and Džeroski, 1994; Pompe and Kononenko, 1997) while the naive Bayesian classifier achieved 35%.
The naive Bayesian classifier became for me a benchmark algorithm that in any medical domain has
to be tried before any other advanced method. Other researcher had similar experience. For exam-
ple, Spiegelhalter et al. (1993) were for several man-months developing an expert system based on
Bayesian belief networks for diagnosing the heart disease for new-born babies. The final classification
accurracy of the system was 65.5%. When they tried the naive Bayesian classifier, they obtained
67.3%.

The theoretical basis for the successful applications of the naive Bayesian classifier (also called
simple Bayes) and its variants was developed by Good (1950; 1964). We demonstrated the efficiency
of this approach in medical diagnosis and other applications (Kononenko et al., 1984; Cestnik et al.,
1987). But only in the early nineties the issue of the transparency (in terms of the sum of information
gains in favor or against a given decision) of this approach was also addressed and shown successful in
the applications in medical diagnosis (Kononenko, 1989; 1993). This issue is addressed in more detail
in Section 3.4 and illustrated in Table 2.

Lately, various variants and extensions of the naive Bayesian classifier have been developed. Ces-
tnik (1990) developed the m-estimate of probabilities that significantly improved the performance
of the naive Bayesian classifiers in several medical problems. Kononenko (1991) developed a semi-
naive Bayesian classifier that goes beyond the “naivety” and detects dependencies between attributes.
The advantage of fuzzy discretization of continuous attributes within the naive Bayesian classifier is
described in (Kononenko, 1992). Langley (1993) developed a system that uses the naive Bayesian
classifier in the nodes of the decision tree. Pazzani (1997) developed another method for explicit
searching of dependencies between attributes in the naive Bayesian classifier. The transparency of the
naive Bayesian classifier can be further improved with the appropriate visualization (Kohavi et al.,
1997).

2.2 Neural networks

After Rosenblatt (1962) developed a basic delta learning rule for single layered perceptrons, Minsky
and Papert (1969) proved that this rule cannot solve nonlinear problems. Only few scientists continued
with research of neural networks. The field gained a prominent impulse with the seminal works of
Hopfield (1982; 1984) on associative neural networks and even more with the publication of the
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backpropagation learning rule for multilayered feedforward neural networks (Rumelhart et al., 1986).
This learning rule and its variant enabled the use of neural networks in many hard medical diagnostic
tasks. However, neural networks were typically used as black-box classifiers lacking the transparancy of
generated knowledge and lacking the ability to explain the decisions. Lately, many advanced variants
of neural network algorihms were developed and some do provide for the transparency of decisions
(Haykin, 1994).

At the very beginning I was very enthusiastic with neural networks. When I read papers by
Hopfield (1982; 1984) and Rumelhart et al. (1986) for the first time in my life I had a feeling that I
understand how neurons in the brain can do useful computations. The early inspiration lead to my
Ph.D. thesis on Bayesian neural networks (Kononenko, 1989a) but later my research interest moved
back to symbolic learning.

2.3 Symbolic learning

Probably the most promising area for medical data analysis was from the very beginning the symbolic
learning of decision trees and decision rules. Hunt et al. (1966) used their Concept Learning System
(CLS) for building decision trees in medical diagnosis and prognosis. They state (p. 170):

“In medicine fairly large files of records may be obtained in the course of routine hospital admin-
istration or from a special survey. Such records are often examined in order to plan an intensive, and
perhaps expensive, specialized investigation. A drawback to this research strategy is that it is difficult
to organize large files of records to reveal complex interactions in a manner that can be understood
by the human investigator. Some help can be obtained by using computer oriented techniques of in-
formation retrieval, such as program to print selected two- and three-way tables plotting one variable
against another. The investigator still must nominate the variable in which he is interested, since such
programs have no way of discovering interesting patterns on their own. A CLS program, on the other
hand, is designed to do precisely this.”

Generating decision trees and decision rules became an active research area after Quinlan (1979)
developed the famous Iterative Dichotomizer 3 (ID3) algorithm and Michalski and Chilausky (1980)
successfuly applied the system AQ in a plant disease diagnostic task. Bratko and Mulec (1980) applied
ID3 to a hard diagnostic problem in oncology and later various descendants of ID3 were developed
and succesfully applied to various medical diagnostic problems. For example, our system Assistant
(Kononenko et al., 1984; Cestnik et al., 1987) was applied to various problems in oncology (local-
ization of primary tumor, prognosing the recurrence of breast cancer, lymphography), urology (lower
urinary tract dysfunctions), and the prognosis of survival in hepatitis. Independently of ID3, Breiman
et al. (1984) developed the system CART and applied it to several diagnostic and prognostic tasks in
cardiology and oncology.

A very incomplete and only illustratory list of applications of machine learning in medical diagnosis
in the eighties include applications in oncology (Elomaa & Holsti, 1989), liver pathology (Lesmo
et al., 1982), diagnosis of thyroid diseases (Horn et al., 1985; Hojker et al., 1988; Quinlan et al.,
1987), rheumatology (Kononenko et al., 1988; Karalič & Pirnat, 1990; Kern et al. 1990), diagnosing
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craniostenosis syndrome (Baim, 1988), dermatoglyptic diagnosis (Chan & Wong, 1989), cardiology
(Bratko et al., 1989; Clark & Boswell, 1991; Catlett, 1991), neuropsychology (Muggleton, 1990),
gynaecology (Nunez, 1990), and perinatology (Kern et al., 1990).

In nineties the Relief algorithm and its successors were developed (Kira and Rendell, 1992a;b;
Kononenko, 1984; Robnik-Šikonja and Kononenko, 1997) that enabled the estimation of the quality
of each attribute in the context of other attributes. This amazing algorithm not only significantly
improved the applicability of the induction of decision trees and similar algorithms but also improved
the transparency of decision trees. The structure of generated trees was more human-like, which was
confirmed in several diagnostic tasks (Kukar et al., 1996; Kononenko et al., 1998).

3 State of the art

In this section we give a description of specific requirements that any machine learning system has to
satisfy in order to be used in the development of applications in medical diagnosis. Several learning
algorithms are briefly described. We compared the performance of all the algorithms on several medical
diagnostic and prognostic problems and their appropriateness for applications in medical diagnosis is
discussed.

3.1 Specific requirements for machine learning systems

For a machine learning (ML) system to be useful in solving medical diagnostic tasks, the following
features are desired: good perfomance, the ability to appropriately deal with missing data and with
noisy data (errors in data), the transparency of diagnostic knowledge, the ability to explain decisions,
and the ability of the algorithm to reduce the number of tests necessary to obtain reliable diagnosis.

In this section we first discuss these requirements. Then we overview a comparison study (Kononenko
et al., 1998) of seven representative machine learning algorithms to illustrate more concretely the points
made.

Good performance: The algorithm has to be able to extract significant information from the
available data. The diagnostic accuracy on new cases has to be as high as possible. Typically, most
of the algorithms perform at least as well as the physicians and often the classification accuracy of
machine classifiers is better than that of physicians when using the same description of the patients.
Therefore, if there is a possibility to measure the accuracy of physicians, their perfomance can be used
as the lower bound on the required accuracy of a ML system in the given problem.

In the majority of learning problems, various approaches typically achieve similar performance in
terms of the classification accuracy although in some cases some algorithms may perform significantly
better than the others (Michie et al., 1994). Therefore, apriori almost none of the algorithms can be
excluded with respect to the performance criterion. Rather, several learning approaches should be
tested on the available data and the one or few with best estimated performance should be considered
for the development of the application.

Dealing with missing data: In medical diagnosis very often the description of patients in patient
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records lacks certain data. ML algorithms have to be able to appropriately deal with such incomplete
descriptions of patients.

Dealing with noisy data: Medical data typically suffer from uncertainty and errors. There-
fore machine learning algorithms appropriate for medical applications have to have effective means for
handling noisy data.

Transparency of diagnostic knowledge: The generated knowledge and the explanation of
decisions should be transparent to the physician. She should be able to analyse and understand the
generated knowledge. Ideally, the automatically generated knowledge will provide to the physican a
novel point of view on the given problem, and may reveal new interrelations and regularities that
physicians did not see before in an explicit form.

Explanation ability: The system must be able to explain decisions when diagnosing new pa-
tients. When faced with an unexpected solution to a new problem, the physician shall require further
explanation, otherwise she will not seriously consider the system’s suggestions. The only possibility for
physicians to accept a “black box” classifier is in the situation where such a classifier outperforms by a
very large margin all other classifiers including the physicians themselves in terms of the classification
accuracy. However, such situation is typically highly improbable.

Reduction of the number of tests: In medical practice, the collection of patient data is often
expensive, time consuming, and harmful for the patients. Therefore, it is desirable to have a classifier
that is able to reliably diagnose with a small amount of data about the patients. This can be verified
by providing all candidate algorithms with a limited amount of data. However, the process of deter-
mining the right subset of data may be time consuming as it is essentially a combinatorial problem.
Some ML systems are themselves able to select an appropriate subset of attributes, i.e., the selection
is done during the learning process and may be more appropriate than others that lack this facility.

3.2 Brief description of some state-of-the-art algorithms

In this subsection we briefly describe seven representative algorithms from symbolic learning, statisti-
cal learning and neural networks: three decision tree builders (Assistant-R, Assistant-I, and LFC), two
variants of the Bayesian classifiers (the naive and the semi-naive Bayesian classifier), a state of the art
neural network which uses the backpropagation learning with weight elimination, and the k-nearest
neighbors algorithm.

Assistant-R: is a reimplementation of the Assistant learning system for top down induction of
decision trees (Cestnik et al., 1987). The main difference between Assistant and its reimplementation
Assistant-R is that ReliefF is used for attribute selection (Kononenko, 1994). ReliefF is an extended
version of RELIEF, developed by Kira and Rendell (1992a;b), which is a non-myopic heuristic mea-
sure that is able to estimate the quality of attributes even if there are strong conditional dependencies
between attributes. In addition, wherever appropriate, instead of the relative frequency, Assistant-R
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uses the m-estimate of probabilities, which was shown to often improve the performance of machine
learning algorithms (Cestnik, 1990).

Assistant-I: A variant of Assistant-R that instead of ReliefF uses information gain for the selection
criterion, as the original Assistant does.

LFC: Ragavan et al. (1993; Ragavan and Rendell, 1993) use limited lookahead in their LFC (Looka-
head Feature Construction) algorithm for top down induction of decision trees to detect significant
conditional dependencies between attributes for constructive induction. LFC generates binary decision
trees. At each node, the algorithm constructs new binary attributes from the original attributes, using
logical operators (conjunction, disjunction, and negation). From the constructed binary attributes, the
best attribute is selected and the process is recursively repeated on two subsets of training instances,
corresponding to two values of the selected attribute.

Naive Bayesian Classifier: A classifier that uses the naive Bayesian formula to calculate the
probability of each class C given the values Vi of all the attributes for an instance to be classified,
assuming the conditional independence of the attributes given the class:

P (C|V1..Vn) = P (C)
∏

i

P (C|Vi)
P (C)

(1)

A new instance is classified into the class with maximal calculated probability. The m-estimate of
probabilities makes the naive Bayesian classifier more roboust (Cestnik, 1990).

Semi-naive Bayesian Classifier: Kononenko (1991) developed an extension of the naive Bayesian
classifier that explicitly searches for dependencies between the values of different attributes. If such
dependency is discovered between two values Vi and Vj of two different attributes then they are not
considered as conditionally independent. Accordingly the term

P (C|Vi)
P (C)

× P (C|Vj)
P (C)

in Equation (1) is replaced with
P (C|Vi, Vj)

P (C)

For such replacement a reliable approximation of the conditional probability P (C|Vi, Vj) is required.
Therefore, the algorithm trades-off between the non-naivety and the reliability of approximations of
probabilities.

Backpropagation with weight elimination: The multilayered feedforward artificial neural
network is a hierarchical network consisting of two or more fully interconected layers of processing
units - neurons. The task of the learning algorithm is to determine the appropriate weights on the
interconnections between neurons. Backpropagation of error in multilayered feedforward neural net-
work (Rumelhart et al., 1986) is a well known learning algorithm and also the most popular among
algorithms for training artificial neural networks. Well known problems with backpropagation are the
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Table 1: The appropriateness of various algorithms for medical diagnosis.

classifier performance transparency explanations reduction miss. data handling

Assistant-R good very good good good acceptable
Assistant-I good very good good good acceptable
LFC good good good good acceptable
naive Bayes very good good very good no very good
semi-naive Bayes very good good very good no very good
backpropagation very good poor poor no acceptable
k-NN very good poor acceptable no acceptable

selection of the appropriate topology of the network and overfitting the training data. An extension
of the basic algorithm that uses the weight elimination technique (Weigand et al., 1990) addresses
both problems. The idea is to start with too many hidden neurons and to introduce into the criterion
function a term that penalizes large weights on the connections between neurons. With such criterion
function the algorithm, during training, eliminates an appropriate number of weights and neurons in
order to obtain the appropriate generalization on the training data.

k-NN: The k-nearest neighbor algorithm. For a given new instance the algorithm searches for k

nearest training instances and classifies the new instance into the most frequent class of these k in-
stances.

3.3 An overview of comparison of algorithms on medical problems

We compared the performance of the algorithms on eight medical data sets (Kononenko et al, 1998).
In the following we discuss how various algorithms fit the requirements. Table 1 summarizes the
comparison of algorithms with respect to the appropriateness for developing applications in medical
diagnostic and prognostic problems.

Among the compared algorithms only decision tree builders are able to select the appropriate subset
of attributes. With respect to the criterion of reduction of the number of tests, these algorithms have
clear advantage over other algorithms.

With respect to the performance criterion the algorithms are more similar. The best performance
was achieved by the naive and semi-naive Bayesian classifiers. In medical data sets, attributes are
typically relatively conditionally independent given the class. Physicians try to define conditionally
independent attributes. Humans tend to think linearly and independent attributes make the diagnostic
process easier. Therefore, it is not surprising that the Bayesian classifiers show clear advantage on
medical data sets. It is interesting that the performance of the k-NN algorithm is also good in these
domains.

With respect to the transparency and the explanation ability criteria there are great differences
between the algorithms:
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k-nearest neighbours: As k-NN does no generalization, the transparency of knowledge repre-
sentation is poor. However, to explain the decision of the algorithm, a predefined number (k) of
nearest neighbours from training set is shown. This approach is analogous to the approach used by
domain experts who make decisions on the basis of previously known similar cases. Such explanation
ability is assessed by physicians as acceptable.

Naive and semi-naive Bayes: Here, knowledge representation consists of a table of conditional
probabilities which seems to be of interest to physicians. Therefore such knowledge representation is
assessed as good. On the other hand, the decisions of Bayesian classifiers can be naturally interpreted
as the sum of information gains (Kononenko, 1993). The amount of information necessary to find out
that an instance belongs to class C, is given by:

− log2 P (C|V1, ..., Vn) = − log2 P (C)−
∑

i

(− log2 P (C) + log2 P (C|Vi)) (2)

Therefore, the decisions of the Bayesian classifiers can be explained with the sum of information gains
from all attributes in favor or against the given class. In the case of the semi-naive Bayesian classifier,
the process is exactly the same, except when the tuples of joined attribute/value pairs occur. In this
case, instead of simple attribute values, the joined values are used.

Such information gains can be listed in a table to sum up the evidence for/against the decision.
Table 2 provides a typical explanation of one decision (Kukar et al, 1996). Each attribute has an asso-
ciated strength, which is interpreted as the amount of information in bits provided by that attribute.
It can be in favor or against the classifier’s decision. One of the main advantages of such explanation
is that it uses all available attributes. Such explanation was found by physicians as very good and
they feel that Bayesian classifiers solve the task in a similar way they diagnose. Namely, they also
sum up the evidence for/against a given diagnosis.

Backpropagation neural networks have non-transparent knowledge representation and in gen-
eral cannot easily explain their decisions. This is due to the large number of real-valued weights which
all influence the result. In some cases it is possible to extract symbolic rules from the trained neural
network. However, the rules tend to be large and relatively complex. Craven and Shavlik (1993) com-
pare rules extracted from a neural network with rules produced by Quinlan’s (1993) C4.5 system. The
rules for a NetTalk data set extracted from a neural network have on the average over 30 antecedents
per rule compared to 2 antecedens for C4.5. Such rules are too complicated and hardly offer a useful
explanation to a domain expert.

Decision trees (Assistant-I and Assistant-R): can be used without the computer and are
fairly easy to understand. Positions of attributes in the tree, especially the top ones, often directly
correspond to the domain expert’s knowledge. However, in order to produce general rules, these meth-
ods use pruning which drastically reduces the tree sizes. Correspondingly, the paths from the root to
the leaves are shorter, contaning only few, although most informative attributes. In many cases the
physicians feel that such a tree describes very poorly the diagnoses and is therefore not sufficiently
informative (Pirnat et al., 1989). However, as mentioned earlier, the structure of generated trees by
Assistant-R is more human-like, which was confirmed in several diagnostic tasks (Kukar et al., 1996;
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Table 2: Semi-naive Bayes: an explanation of a decision in the femoral neck fracture recovery problem.

Decision = No complications (correct)

Attribute value For decision Against decision
(bit) (bit)

Age = 70 - 80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0.00
Time between injury and operation > 10 days 0.42
Fracture classification acc. to Garden = Garden III -0.30
Fracture classification acc. to Pauwels = Pauwels III -0.14
Transfusion = Yes 0.07
Antibiotic profilaxis = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None -0.00
Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks

Combination: 0.63
Therapy = Artroplastic AND
Anticoagulant therapy = Yes
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Kononenko et al., 1998).

Lookahead feature construction (LFC) also generates decision trees. However, in each node a
potentially complex logical expression is used instead of a simple attribute value. The generated trees
can therefore be smaller. The expressions may represent valid concepts from the domain. However,
on the lower levels of the tree the expressions are often very specific and typically meaningless. Due
to complex logical expressions in nodes, the number of attributes used to classify an instance can be
greater than in usual decision trees.

4 Future trends - two case studies

There are many directions in which future development of machine learning in medical diagnosis may
take place. Some may rely on new trends in computer technology or technology of medical equipment,
however, probably more important is going to be the development of new machine learning algorithms
and the philosophy of medical diagnosis. We do not want to speculate all possible trends. Instead
we describe two case studies that illustrate the new trends in the development of machine learning
algorithms and how machine learning methodology can support a possible change of philosophy of
medical diagnosis.

The first case study describes a recently developed method for dealing with reliability of decisions
of classifiers, which seems to be promising for intelligent data analysis in medicine. The second
describes an approach to using machine learning in order to verify some unexplained phenomena from
complementary medicine, which is not (yet) approved by the orthodox medical community but could
in the future play an important role in overall medical diagnosis and treatment.

4.1 Reliability of single prediction

4.1.1 Adding new instance to a learning set

When we apply a certain machine learning method we usually estimate the overall reliability of the
method, typically in terms of the classification accuracy, information score (Kononenko and Bratko,
1991) or misclassification cost (Kukar et al., 1999). However, what we are really interested in when
using the method to solve a given problem, is the reliability of that method on this particular problem.
This is also important when we use several classifiers and combine their decisions (Kukar et al., 1996).
In such a case we have to weigh the contribution of each classifier to the final decision. The weights
should be case dependent, i.e., we have to be able to estimate the reliability of each method on the
given case.

A simple idea can be used for that purpose: the decision of a classifier is reliable on the given case
when the decision (prediction, class, diagnosis) is not sensitive to adding this case, labeled with this
or any other decision (diagnosis), to the learning set. We can verify the reliability simply by labeling
the new case in turn with all possible decisions and by adding it to the learning set and rerunning the
learning algorithm. If the decision does not vary a lot, we assume that the classifier is quite reliable.
On the other hand, if the decisions are sensitive to adding a new case to the learning set, the final
decision is not reliable.
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Kukar (2001) in his PhD thesis has elaborated this basic idea much further. He developed several
metrics for measuring distances between classifications which are then used to measure the variation
of classification. He compared several different reliability estimations and empirically showed that a
metric based on scalar product of classification vectors performs best when combined with posttest
probability. The experimental results on 15 domains confirm that that the estimation of the reliability
of single prediction provides useful information that can be used to improve the overall applicability
of classifiers.

The same idea was used for weighted combination of answers of several classifiers. This approach
improves the classification accuracy of a single classifier and considarably improves the roboustness of
the combined classifier with respect to noisy, random, and default classifiers.

The same idea was used also for problems with non-uniform misclassification costs. Cost sensitive
realiability estimations were used for cost-sensitive combination of different classifiers that do not
need to be cost-sensitive by themselves. Experimental results show significant decrease of overall
misclasification costs (Kukar, 2001). We ilustrate the usefulness of the approach on the problem of
diagnosing the ishaemic heart disease.

4.1.2 Application in the ishaemic heart disease diagnosis

Ishaemic heart disease is one of the world’s most important causes of mortality, so any improvements
and rationalization of diagnostic procedures are very useful. The four diagnostic levels consist of
the evaluation of signs and symptoms of the disease and ECG (electrocardiogram) at rest, sequential
ECG testing during the controlled exercise, myocardial scintigraphy and finally coronary angiography.
The diagnostic process is stepwise and the results are interpreted sequentially, i.e., the next step is
necessary only if the results of the former are inconclusive. Because of the possible suggestibility, the
results of each step are interpreted separately and only the results of the highest step are valid.

On the other hand, machine learning methods may be able to objectively interpret all available
results for the same patient and in this way increase the diagnostic accuracy of each step. The
performance of diferent diagnostic methods is usually described as classification accuracy, sensitivity,
specificity, ROC curve, and posttest probability. We shall discuss only the latter, the other performance
criteria are discussed in (Kukar et al., 1999).

In our study we used a dataset of 327 patients with performed clinical and laboratory examina-
tions, exercise ECG, myocardial scintigraphy and coronary angiography. In 229 cases the disease was
angiographically confirmed and in 98 cases it was excluded. The patients were selected from the pop-
ulation of the approximately 4000 patients who were examined at the Nuclear Medicine Department
of University Clinical Center in Ljubljana, Slovenia in years 1991-1994. For the purpose of our study
we selected only the patients with complete diagnostic procedures (all four steps).

The positive and the negative diagnosis of the ishaemic heart disease are defined to be reliable
if the probability of presence or absence of the disease, respectively, is greater than 0.90 (Diamond
and Forster, 1979). For that purpose the tabulated pretest probabilities and the results of various
diagnostic steps together with the sensitivity and specificity are used in order to calculate the posttest
probabilities (Pollock, 1983).

The standard procedure of the lookup table can be replaced by machine learning algorithms. Kukar
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Table 3: Results of various classifiers in the ishaemic heart disease diagnosis (Kukar, 2001). The
percentage of reliably diagnosed cases together with the amount of wrongly classified cases is given
both for the positive and negative cases.
(a) Stepwise calculation of posttest probabilities.
(b) Using all attributes at once to calculate posttest probabilities.
(c) Using all attributes at once to evaluate the reliability of classification of single new cases.

classifier positive cases negative cases
reliable (%) errors (%) reliable (%) errors (%)

physicians 73 3 46 8

semi-naive Bayes (a) 79 5 46 3
Assistant-I (a) 79 5 49 8
neural network (a) 78 4 49 8

semi-naive Bayes (b) 90 7 81 11
Assistant-I (b) 87 8 77 6
neural network (b) 86 5 66 9

naive Bayes (c) 89 5 83 1
semi-naive Bayes (c) 91 6 79 2
Assistant-I (c) 77 18 55 18
Assistant-R (c) 81 5 77 2
k-NN (c) 64 12 80 12
neural network (c) 81 11 72 11
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and Grošelj (1999) showed that for the stepwise calculation of posttest probabilities machine learning
algorithms are able to improve the number of reliably classified positive and negative cases for 6%,
which is an important improvement (Table 3 (a)). When we allow the machine learning algorithm to
deal with all attributes at once the imporvement is even higher, however, this result is not useful, as
the number of incorrectly classified negative cases also increases (Table 3 (b)). On the other hand,
Kukar (2001) has shown that if machine learning algorithms use the estimation of the reliability of a
single prediction the results can be significantly better (Table 3 (c)). The naive and the semi naive
Bayes and Assistant-R achieved excellent results. Compared to physicians the naive Bayesian classifier
improves the number of reliably classified positive cases for 17% and the number of reliably classified
negative cases for 37%!

4.2 Machine learning in complementary medicine

4.2.1 Kirlian effect - a scientific tool for studying subtle energies

The history of the so called Kirlian effect, also known as the Gas Discharge Visualization (GDV)
technique (a wider term that includes also some other techniques is bioelectrography), goes back to
1777 when G.C. Lihtenberg in Germany recorded electrographs of sliding discharge in dust created by
static electricity and electric sparks. Later various researches contributed to the development of the
technique (Korotkov, 1998b): Nikola Tesla in the USA, J.J. Narkiewich-Jodko in Russia, Pratt and
Schlemmer in Prague until the Russian technician Semyon D. Kirlian together with his wife Valentina
noticed that through the interaction of electric currents and photograph plates, imprints of living
organisms developed on film. In 1970 hundreds of enthusiasts started to reproduce Kirlian photos and
the research was until 1995 limited to using a photo-paper technique. In 1995 a new approach, based
on CCD Video techniques, and computer processing of data was developed by Korotkov (1998a;b) and
his team in St. Petersburg, Russia. Their instrument Crown-TV can be routinely used which opens
practical possibilities to study the effects of GDV.

The basic idea of GDV is to create an electromagnetic field using a high voltage and high fre-
quency generator. After a thershold voltage is exceeded the ionization of gas around the studied
object takes place and as a side effect the quanta of light – photons are emitted. So the discharge can
be fixed optically by a photo, photo sensor or TV-camera. Various parameters influence the ioniza-
tion process (Korotkov, 1998b): gas properties (gas type, pressure, gas content), voltage parameters
(amplitude, frequency, impulse waveform), electrode parameters (configuration, distance, dust and
moisture, macro and micro defects, electromagnetic field configuration) and studied object parame-
ters (common impedance, physical fields, skin galvanic response, etc.). So the Kirlian effect is the
result of mechanical, chemical, and electromagnetic processes, and field interactions. Gas discharge
acts as means of enhancing and visualization of super-weak processes.

Due to the large number of parameters that influence the Kirlian effect it is very difficult or impos-
sible to control them all, so in the development of discharge there is always an element of vagueness or
stochastic. This is one of the reasons why the technique has not yet been widely accepted in practice
as results did not have a high reproducibility. All explanations of the Kirlian effect apprehended
fluorescence as the emanation of a biological object. Due to the low reproducibility, in academic cir-
cles there was a widely spread opinion that all observed phenomena are nothing else but fluctuation
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of the crown discharge without any connection to the studied object. With modern technology, the
reproducibility became sufficent to enable serious scientific studies.

Besides studying non-living objects, such as water and various liquids (Korotkov, 1998b), minerals,
the most widely studied are living organisms: plants (leafs, seeds, etc. (Korotkov and Kouznetsov,
1997; Korotkov, 1998b)), animals (Krashenuk et al., 1998), and of course humans. For humans, most
widely recorded are coronas of fingers (Kraweck, 1994; Korotkov, 1998b), and GDV records of blood
excerpts (Voeikov, 1998). Principal among these are studies of the psycho-physiological state and
energy of a human, diagnosis (Gurvits and Korotkov, 1998), reactions to some medicines, reactions to
various substances, food (Kraweck, 1994), dental treatment (Lee, 1998), alternative healing treatment,
such as acupuncture, ’bioenergy’, homeopathy, various relaxation and massage techniques (Korotkov,
1998b), GEM therapy, applied kineziology and flower essence treatment (Hein, 1999), leech therapy,
etc., and even studying the GDV images after death (Korotkov, 1998a). There are many studies
currently going on all over the world and there is no doubt that the human subtle energy field, as
vizualized using the GDV technique, is highly correlated to the human’s psycho-physiological state,
and can be used for diagnostics, prognostics, theraphy selection, and controling the effects of the
therapy.

4.2.2 Verifying the map of organs

Korotkov’s team has developed a computer program that generates the corona of the whole human
body from coronas of all ten fingertips. The program is based on a map, known from traditional
Chinese medicine and described in Mandel’s book (1986). This map defines regions (sectors) of each
finger’s corona to be related with a specific organ or organ system in the body. For example, the
corona of the left little finger contains sectors that correspond to the coronary vessels, heart, kidney,
respiratory system, small intestine, and ileum. Korotkov (1998b) and his team slightly modified
Mandel’s map.

For the orthodox medicine this map is meaningless, there is no physiological evidence for the
connection of fingertips with different organs. Besides, the Kirlian camera is considered to provide
only noisy pictures that are not related to human state of health.

In order to verify the map and the hypothesis that Kirlian camera provides useful information,
we performed several experiments (Kononenko et al., 1999a;b; Bevk et al., 2000). In the following we
briefly describe one such experiment.

We recorded all ten fingertips of 105 persons that also filled in a questionnaire where they described
their health problems. We wanted to distinguish persons, that in the questionnaire had answered that
they had no health problem, from persons who had problems with the throat (majority class contained
52.4% of cases). The cases were described by 75 numberic attributes that correspond to areas of sectors
of coronas according to the map. We used the C4.5 learning system (Quinlan, 1993) and the result
of 10-fold cross validation was 14.5% of error. This indicates that coronas in fact contain useful
information for diagnosis.

Even more interesting was the structure of trees. For the root of the tree the algorithm selected
most of the times, out of 75 attributes describing sectors of fingers, a sector that corresponds to the
throat. There are two such sectors out of 75 sectors (the probability that this could happen by chance
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for one tree is 2/75 = 0.027). The other two most important attributes corresponded to jaw and
kidney. Jaw is, also by orthodox medicine, related to throat while kidney is by traditional Chinese
medicine directly connected with the throat.

This result and several similar studies (Kononenko et al., 1999a; b; Bevk et al., 2000) indicate that
the map of organs makes sense and that it would be beneficial for medicine to study this phenomena
and eventualy discover the underlying principles.

4.2.3 Overview of other studies

We use Kirlian camera to indirectly record subtle bioelectromagnetic field of living organisms, mostly
humans. The obtained images are then described with a set of numerical parameters that serve as an
input to statistical and ML algorithms. The subtle energies are not recognized by current orthodox
scientific community and the aim of our studies is to verify “knowledge” of many practitioners in
complementary medicine, who claim that living organisms besides physical body contain also non-
measurable subtle levels, such as emotional and mental body.

We have performed several studies in which we analysed the influence of various parameters on
plant and human bioelectromagnetic field:

Apple skin: We recorded the coronas of apple peels that were cut off from apples in a standard way.
We used four sorts of apples of two different ages. We succeeded by the means of ML to extract
useful information for distinguishing apples of different sorts and of different ages (the achieved
classification accuracy was low but significantly higher than random classification). We were
unable to extract any information to distinguish sun/shadow sides of apples (Kononenko et al.,
1999b).

Grapes: The aim of the study was to verify whether the Kirlian camera could be used to describe
grapevines and if the berry bioelectromagnetic field is influenced by disease. With the Kirlian
camera we recorded coronas of grape berries. We tested this method on eight grapevine cultivars,
performing different tests using ML algorithms. The results show that the coronas of grapevine
berries contain significant information about the cultivars and their sanitary status (Kononenko
et al., 2000b).

Menstrual cycle: For the preliminary study we recorded coronas of all ten fingertips of 13 female
students in four weeks, one recording per week. Each recording was classified into one of four
menstrual phases. The results of the analysis indicate that the coronas seem to be correlated
with menstrual phases and that sectors of organs make sense. Out of 225 numerical parame-
ters we automatically extracted 15 most important parameters. Fourteen of those parameters
corresponded to sectors of three fingers which by Chinese medicine are directly connected with
organs that are by offical medicine affected by/responsible for the menstrual cycle (Kononenko
et al., 1999b).

T-shirts: We wanted to evaluate the effect of different T-shirts on the human bioelectromagnetic field:
color T-shirts developed by physicist Dr. Tom Chalko from University of Melbourne, ’healing’
T-shirt developed by Vitalis from Slovenia, and an ordinary black and ordinary white T-shirt.
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We measured 5 groups of people (with a control group). The analysis confirmed that black and
white T-shirts have no significant influence on the coronas, while Vitalis and color T-shirts do
have positive influence - they improve in time the coronas of humans fingers by means of larger
area and lower fragmentation (Kononenko et al., 1999b).

Glass 2000: Vili Poznik from Celje, Slovenia uses orgon technology to encode information into a
glass which affects in some way the water with which you fill the glass (this is of course nonsense
for orthodox science). We recorded coronas of 34 persons before and after drinking the tap
water from an ordinary glass and from a Glass 2000, coded by Vili Poznik. The results show
that there was a significant improvement of coronas (larger area and lower fragmentation) when
drinking water from Glass 2000 while the effect of drinking from ordinary glass was insignificant
(Kononenko et al., 2000b).

The art of living: We performed three studies in order to verify the effects of The Art of Living
Programme (exercises in communication, relaxation and breathing) on its participants. The
results showed significant improvement of coronas (larger area) for participants of a 2-hour
meeting and of a 6 day seminar compared to control groups which had no significant differences
(Trampuž et al., 2000).

Mobile telephones: We recorded coronas of all ten fingertips of five groups of persons that were car-
rying the mobile telephone above their heart for a period of one hour under different conditions:
without any protection, with two different energetic protections (which are nonsense for ortho-
dox science), with placebo (fake) protection and a control group (without mobile telephones).
Results indicate that mobile telephones negatively affect the human BEM field, that energetic
protections work well while the placebo protection does not work (Kononenko et al., 2000a).

Energetic diagnosis: We recorded coronas of all ten fingertips of 110 persons for whose the ex-
trasense healer provided the energetic diagnosis. We used machine learning to interpret the
GDV coronas in order to verify three hypothesis: (a) the GDV images contain useful informa-
tion about the patient, (b) the map of organs on coronas of 10 fingers does make sense, and (c)
the extrasense healer is able to see by himself (with his natural senses) the energetic disorders
in the human body. The results support all three hypotheses (Bevk et al., 2000).

5 Discussion

The historical development of machine learning and its applications in medical diagnosis shows that
from simple and straigtforward to use algorithms, systems and methodology have emerged that enable
advanced and sophisticated data analysis. In the future, intelligent data analysis will play even a more
important role, due to the huge amount of information produced and stored by modern technology.
Current machine learning algorithms provide tools that can significantly help medical practitioners to
reveal interesting relationships in their data.

Our experiments show that in medical domains various classifiers perform roughly the same. So
one of the important factors when choosing which classifier to apply is its explanation ability. Our
experiments show that the physicians prefer explanations as provided by the Bayesian classifiers and
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decision tree classifiers: Assistant-R and LFC. However, instead of selecting a single best classifier,
it seems that the best solution is to use all of them and combine their decision when solving new
problems. The physicians found that the combination of classifiers was the appropriate way of im-
proving the reliability and comprehensibility of diagnostic systems. The combination should be done
in an appropriate way and the reliability of each classifier on the given new case should be taken into
account, as the results of Kukar (2001) clearly demonstrate.

Regarding the future role of machine learning in medical diagnosis, our views are as follows:

• Machine learning technology has not been accepted in the practice of medical diagnosis to an
extent that the clearly demonstrated technical possibilities indicate. However, it is hard to
expect that this disproportion between the technical possibilities and practical exploitation will
remain for very much longer.

• Among the reasons for slow acceptance perhaps the most reasonable one is that the introduction
of machine learning technology will further increase the abundance of tools and instrumentation
available to physicians. Any new tool has the undesirable side effect of further increasing the
complexity of the physician’s work which is already sufficiently complicated. Therefore machine
learning technology will have to be integrated into the existing instrumentation that makes its
use as simple and natural as possible.

• Machine learning based diagnostic programs will be used as any other instrument available to
physicians: as just another source of possibly useful information that helps to improve diagnostic
accuracy. The final responsibility and judgement whether to accept or reject this information
will, as usual, remain with the physician.

• Complementary medicine is becoming in recent years more and more important, which can be
seen also by the amount of money people spend on various complementary medicine treatments.
Physicians are becoming aware of the efficiency and the benefits of complementary medicine and
they need verification procedures in order to acknowledge the benefits and issue licences for the
use of complementary approaches. Machine learning can play an important role in this process
in praticular due to the transparency of data analysis.
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Robnik-Šikonja M. and Kononenko I., An adaptation of Relief for attribute estimation in regression, Proc.
Int. Conf. on Machine Learning ICML-97, Nashville, July 1997, pp. 296-304.

Rosenblatt F., Principles of Neurodynamics, Washington, DC: Spartan Books, 1962.
Rumelhart D.E., Hinton G.E. in Williams R.J., Learning internal representations by error propagation.

Rumelhart D.E. in McClelland J.L. (eds.) Parallel Distributed Processing, Vol. 1: Foundations. Cambridge:
MIT Press, 1986.

Shavlik J.W., Dietterich T.G. (eds.) Readings in machine learning, Morgan Kaufmann Publ., 1990.
Spiegelhalter D.J., Philip Dawid A., Lauritzen S.L. and Cowell R.G., Bayesian analysis in expert systems,

Statistical Science, 8(3):219-283, 1993.
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Table 1: The appropriateness of various algorithms for medical diagnosis.

classifier performance transparency explanations reduction miss. data handling

Assistant-R good very good good good acceptable
Assistant-I good very good good good acceptable
LFC good good good good acceptable
naive Bayes very good good very good no very good
semi-naive Bayes very good good very good no very good
backpropagation very good poor poor no acceptable
k-NN very good poor acceptable no acceptable
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Table 2: Semi-naive Bayes: an explanation of a decision in the femoral neck fracture recovery problem.

Decision = No complications (correct)

Attribute value For decision Against decision
(bit) (bit)

Age = 70 - 80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0.00
Time between injury and operation > 10 days 0.42
Fracture classification acc. to Garden = Garden III -0.30
Fracture classification acc. to Pauwels = Pauwels III -0.14
Transfusion = Yes 0.07
Antibiotic profilaxis = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None -0.00
Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks

Combination: 0.63
Therapy = Artroplastic AND
Anticoagulant therapy = Yes
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Table 3: Results of various classifiers in the ishaemic heart disease diagnosis (Kukar, 2001). The
percentage of reliably diagnosed cases together with the amount of wrongly classified cases is given
both for the positive and negative cases.
(a) Stepwise calculation of posttest probabilities.
(b) Using all attributes at once to calculate posttest probabilities.
(c) Using all attributes at once to evaluate the reliability of classification of single new cases.

classifier positive cases negative cases
reliable (%) errors (%) reliable (%) errors (%)

physicians 73 3 46 8

semi-naive Bayes (a) 79 5 46 3
Assistant-I (a) 79 5 49 8
neural network (a) 78 4 49 8

semi-naive Bayes (b) 90 7 81 11
Assistant-I (b) 87 8 77 6
neural network (b) 86 5 66 9

naive Bayes (c) 89 5 83 1
semi-naive Bayes (c) 91 6 79 2
Assistant-I (c) 77 18 55 18
Assistant-R (c) 81 5 77 2
k-NN (c) 64 12 80 12
neural network (c) 81 11 72 11
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